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Güneysu4, Dongyeon Hong2, Markus Krausz4, Georg Land4, Junbum

Shin2, Damien Stehlé3,5, MinJune Yi1,2
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Brief Introduction to HAETAE H. Choe

HAETAE

Digital signature scheme

Secure against quantum attacks

based on lattice hard problems MLWE and MSIS
follows Fiat-Shamir with aborts framework, secure in QROM

Simple but short

simpler than Falcon1 & shorter than Dilithium1

optimal rejection rate with simple rejection condition

Design rationale

Fiat-Shamir with aborts framework
using Bimodal rejection sampling
randomness sampling from Hyperball distribution

1NIST 2022 PQC signature standards
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Digital signatures

Conventional signatures work as:

Alice

wants to sign

on a document

Bob

wants to verify

that Alice signed

on the document

4 / 30



Preliminaries: Digital signatures H. Choe

Digital signatures

Conventional signatures work as:
Alice

wants to sign

on a document

Bob

wants to verify

that Alice signed

on the document

Digital signatures work as:

(sk, vk)← KeyGen and broadcast vk

Alice (knows sk)

signature σ ← Sign(sk,m)

Bob (knows vk)

Verify(vk,m, σ)

= accept (or reject)
(m,σ)
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Digital signatures

Digital signatures work as:

(sk, vk)← KeyGen and broadcast vk

Alice (knows sk)

signature σ ← Sign(sk,m)

Bob (knows vk)

Verify(vk,m, σ)

= accept (or reject)
(m,σ)

Necessary properties:

Correctness:

Verify(vk,m,Sign(sk,m)) = accept

Unforgeability: No one else than Alice can make a new signature.
More formally,

For a given verification key and some message-signature pairs, no
adversary can forge a new valid signature.
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Preliminaries: Lattice hard problems and lattice-based signatures H. Choe

Lattice hard problems

Lattice-based cryptography is the generic term for constructions of
cryptographic primitives that involve lattices ... are currently important

candidates for post-quantum cryptography. - Wikipedia

Lattice-based cryptography bases its security on lattice hard problems, which
are studied for the last 20–30 years with strong theoretical backgrounds:

SVP and GapSVPλ are NP-hard for randomized reductions on some
limited parameters [Ajt96, HR07].

worst-case to average-case reductions [Ajt96], meaning that
worst-case problems are not harder than average-case problems.

Useful hard problems: NTRU, LWE, SIS, MLWE, MSIS, etc : hard
problems for random instances.

8 / 30



Preliminaries: Lattice hard problems and lattice-based signatures H. Choe

Lattice hard problems

Lattice-based cryptography is the generic term for constructions of
cryptographic primitives that involve lattices ... are currently important

candidates for post-quantum cryptography. - Wikipedia

Lattice-based cryptography bases its security on lattice hard problems, which
are studied for the last 20–30 years with strong theoretical backgrounds:

SVP and GapSVPλ are NP-hard for randomized reductions on some
limited parameters [Ajt96, HR07].

worst-case to average-case reductions [Ajt96], meaning that
worst-case problems are not harder than average-case problems.

Useful hard problems: NTRU, LWE, SIS, MLWE, MSIS, etc : hard
problems for random instances.

8 / 30



Preliminaries: Lattice hard problems and lattice-based signatures H. Choe

Lattice-based signatures

Fiat-Shamir with abort

[Lyu09]

[Lyu12]

[GLP12]

[BG14]

Dilithium
[DKL+18]

BLISS(-B)
[DDLL13,
Duc14]

HAETAE

[DFPS22]

Hash-and-Sign

NTRUSign
[HHGP+03]

[GPV08]

[DLP14]

[DP16]

Falcon
[FHK+18]

MITAKA
[EFG+22]

[ETWY22]
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Lattice-based signatures

Fiat-Shamir with abort:

KeyGen : output (sk = s, vk = t), where t = As mod q and s is short.

Sign(sk = s, m) : for short y, output (c = H(Ay mod q, m), z = y + cs) via rejection
sampling.

Verify(vk = A, m, s) : check whether c = H(Az− ct mod q,m) and z is short.

Correctness:

First, y and s are short. Since c = H(·) is binary, cs is also short.
Thus, z = y + cs is short.

It holds that Az− ct = A(y + cs)− ct = Ay mod q since
As = t mod q.
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Preliminaries: Details of “Fiat-Shamir with aborts” H. Choe

Fiat-Shamir with aborts

Basic “Fiat-Shamir with aborts” framework [Lyu09, Lyu12]

KeyGen : output (sk = s, vk = t), where t = As mod q and s is short.

Sign(sk = s, m) : for short y, output (c = H(Ay mod q, m), z = y + cs) via
rejection sampling.

Verify(vk = A, m, s) : check whether c = H(Az− ct mod q,m) and z is short.

Signature schemes following the “Fiat-Shamir with aborts” framework have
well-studied quantum security [KLS18].

Unforgeability:

Key security: vk does not leak sk (LWE).

Zero-knowledge (HVZK): (c, z) does not leak sk (rejection sampling).

(Special) Soundness: cannot convince Bob without sk (SIS).
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Preliminaries: Details of “Fiat-Shamir with aborts” H. Choe

Rejection sampling

Näıvely, (c, z = y + cs) can leak some partial information of s.

Suppose we have an ultimate number of pairs (c, z = y + cs) so that we
can collect z’s for the same c. Then the distribution of z can be drawn as:

depending on the distribution of y (e.g. discrete Gaussian or uniform).

The distribution leaks cs, i.e. the secret key sk.

=⇒ Rejection sampling prevents this leakage.
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Preliminaries: Details of “Fiat-Shamir with aborts” H. Choe

Rejection sampling

Rejection sampling rejects the pair (c, z) with a certain probability2, then
restarts. This makes the distribution of signature independent to sk:

If pt(x) ≤M · ps(x) for almost all x = (c, z), the followings are identical:

i) sampling from source distribution ps with rejection sampling (Areal)
ii) sampling from target distribution pt and reject with probability 1

M (Aideal)

Areal :

1: x← ps

2: Return x with probability min
(

pt(x)
M·ps(x) , 1

)
3: Else repeat 1–2

Aideal :

1: x← pt
2: Return x with probability 1

M

3: Else repeat 1–2

2a function of (c, z).
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Preliminaries: Details of “Fiat-Shamir with aborts” H. Choe

Bimodal rejection sampling

The run-time of rejection sampling depends on the constant M (≈ ratio
between green and purple areas).

To decrease M , [DDLL13] modified z = y + cs to

z = y + (−1)bcs

with modulus 2q instead of q:

Note that M does not change if y is chosen from the uniform interval.
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Preliminaries: Details of “Fiat-Shamir with aborts” H. Choe

Bimodal rejection sampling

However, this makes “secure” implementation3 much harder. It is basically
due to “reject with probability a function of sk.”

For e.g., for ≈120 bits security45,

Dilithium
Bliss

Mitaka
Falcon

si
ze
*

implementation difficulty

5KB

3an implementation secure against physical attacks (side-channel attacks)
4core-SVP hardness
5size= |sig|+ |vk|
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Dive into HAETAE: HAETAE, in theory H. Choe

HAETAE, in theory

The design rationale of HAETAE:

Fiat-Shamir with aborts framework

using Bimodal rejection sampling

randomness sampling from Hyperball distribution

We now focus on Hyperball and the changes thereafter.
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Dive into HAETAE: HAETAE, in theory H. Choe

Hyperball bimodal rejection sampling

Previously, the randomness y was chosen from either discrete Gaussian or
uniform hypercube6.

6The vectors y and z are high-dimensional vectors, so uniform in an interval is indeed a
uniform hypercube.
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Dive into HAETAE: HAETAE, in theory H. Choe

Hyperball bimodal rejection sampling

We, instead, use uniform hyperball distribution for sampling y [DFPS22];

to exploit optimal rejection rate,

to reduce signature and verification key sizes,

and use the bimodal approach [DDLL13];

for more compact signature sizes,

for a simpler rejection condition, which leads to the easier
implementation of secure rejection.

20 / 30



Dive into HAETAE: HAETAE, in theory H. Choe

Hyperball bimodal rejection sampling

We, instead, use uniform hyperball distribution for sampling y [DFPS22];

to exploit optimal rejection rate,

to reduce signature and verification key sizes,

and use the bimodal approach [DDLL13];

for more compact signature sizes,

for a simpler rejection condition, which leads to the easier
implementation of secure rejection.

20 / 30



Dive into HAETAE: HAETAE, in theory H. Choe

Hyperball bimodal rejection sampling

Recap: we return x = (c, z) with probability min
(

pt(x)
M ·ps(x) , 1

)
.

We reject x = (c, z) sampled from a source distribution ps to a target
distribution pt, where

ps: uniform in a hyperball of radii B centered at ±cs
union of two large balls

pt: uniform in a smaller hyperball of radii B′ centered at zero
a smaller ball in the middle
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Hyperball bimodal rejection sampling

Recap: we return x = (c, z) with probability min
(

pt(x)
M ·ps(x) , 1

)
.

We reject x = (c, z) sampled from a source distribution ps to a target
distribution pt, where

ps(x) =
1

2·vol(B(B)) · χ∥z−cs∥<B + 1
2·vol(B(B)) · χ∥z+cs∥<B,

pt(x) =
1

vol(B(B)) · χ∥z∥<B′ .

This leads to

pt(x)

M · ps(x)
=

χ∥z∥<B′

χ∥z−cs∥<B + χ∥z+cs∥<B

=
0 if z /∈ B(B′),

1/2 if z ∈ B(B′) ∩ B(B, cs) ∩ B(B,−cs),
1 if z ∈ B(B′) \ (B(B, cs) ∩ B(B,−cs))

for some M > 0.
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Dive into HAETAE: HAETAE, in theory H. Choe

Hyperball bimodal rejection sampling

That is, we return x = (c, z) with probability

0: if ∥z∥ ≥ B′,

1/2: else if ∥z− cs∥ < B and ∥z+ cs∥ < B,

1: otherwise.

Since z = y + (−1)bcs, we can do even simpler,

if ∥z∥ ≥ B′, reject,

else if ∥2z− y∥ < B,7 reject with probability 1/2,

otherwise, accept,

resulting in a signature, uniform in a hyperball B(B′).
7{z± cs} = {y, 2z− y} and always ∥y∥ < B.
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Dive into HAETAE: HAETAE, in theory H. Choe

Compression techniques

To reduce the size of the signature, we use two compression techniques:

High, Low, and Least Significant Bits

basically, it is mod± α for some power-of-two integer α | 2(q − 1).
some optimizations for better sizes8, e.g., HighBitshint and LowBitshint:
conserving one bit from HighBits while making LowBits a little bit
complicated.

Encoding via range Asymmetric Numeral System (rANS encoding)

rANS encoding is a type of entropy coding.
adapted from [Dud13], we encode high bits of signature within it’s
entropy +1 bit.

8newly updated!
24 / 30
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Parameters and concrete security

Parameters sets HAETAE120 HAETAE180 HAETAE260
Target security 120 180 260

q 64513 64513 64513
(k, ℓ) (2,4) (3,6) (4,7)

Unforgeability (strong unforgeability for randomized version)

Classical core-SVP 123 (100) 189 (156) 258 (216)
Quantum core-SVP 108 (87) 166 (137) 227 (190)

Key security against key-recovery attack

Classical core-SVP 125 236 288
Quantum core-SVP 109 208 253

Sizes (in Bytes)

|sig| 1468 2285 2781
|vk| 1056 1568 2080

|sig|+ |vk| 2524 3853 4861

Table: Security and sizes for HAETAE.

26 / 30



Dive into HAETAE: Implementation H. Choe

Parameters and concrete security.

HAETAE has reasonable sizes and is easily implementable, and also seems
securely maskable.

Targeting 120-bit security, we summarize recent lattice-based signatures. Sizes are shown in bytes.
The prefixes d and int imply discrete and integer, respectively. Note that dHyperball requires
continuous Gaussian at 0. Note that verification is fast enough in all the schemes.

Scheme sig vk KeyGen
Sign

sampling rejection

Dilithium-2 2420 1312 fast Hypercube ∥ · ∥∞ < B

Bliss-10249 1700 1792 fast dGaussian at 0
reject with

prob. f(sk,Sig)

HAETAE120 1468 1056 fast dHyperball at 0 ∥ · ∥2 < B

Mitaka-51210 713 896 slow
dGaussian at 0 &

none
intGaussian at H(m)

Falcon-512 666 897 slow dGaussian at H(m) none

Table: Comparison between different lattice-based signature schemes.

9modified Bliss (to ≥ 120 bit-security) in Dilithium paper.
10Mitaka-512 has 102 bits of security 27 / 30



Dive into HAETAE: Implementation H. Choe

Reference Implementation

Benchmark (CPU cycles and time elapsed)

– GNU/Linux with Linux kernel version 5.4.0.

– AMD Ryzen 3700x.

– The compiler gcc 9.4.0 with -O3 and -fomit-frame-pointer.

HAETAE120 HAETAE180 HAETAE260

Keygen 730k 1,329k 1,867k
Sign 4,427k 6,843k 8,438k
Verify 491k 789k 1,145k

Total cycles 5,525k 8,961k 11,450k
Time elapsed 1.611ms 2.584ms 3.360ms

Table: Benchmark of HAETAE public release v1.1.

28 / 30



Upcoming updates! H. Choe

Upcoming updates (Feb. 24th, 2023.)

Missing parts in the first round submission:

rANS encoding

rejection sampling for secret key

min-entropy analysis

Modifications:

Toward smaller sizes:

new compression and rANS encoding for hint

Toward secure implementation:

get rid of floating-point arithmetic: numerical analysis and fixed-point
Gaussian sampling is included for hyperball uniform sampling

Toward faster implementation:

NTT/CRT-based implementation

The updated version (v1.1) will be uploaded to SMAUG & HAETAE
website: http://kpqc.cryptolab.co.kr/.

29 / 30
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Any question?
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Lattice signatures and bimodal gaussians.
In Annual Cryptology Conference, pages 40–56. Springer, 2013.

[DFPS22] Julien Devevey, Omar Fawzi, Alain Passelègue, and Damien Stehlé.
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[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest.
Efficient identity-based encryption over ntru lattices.
In International Conference on the Theory and Application of Cryptology and
Information Security, pages 22–41. Springer, 2014.
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[Duc14] Léo Ducas.
Accelerating bliss: the geometry of ternary polynomials.
Cryptology ePrint Archive, Paper 2014/874, 2014.
https://eprint.iacr.org/2014/874.

https://eprint.iacr.org/2014/874


References III

[Dud13] Jarek Duda.
Asymmetric numeral systems: entropy coding combining speed of huffman coding
with compression rate of arithmetic coding, 2013.
ArXiv preprint, available at https://arxiv.org/abs/1311.2540.

[EFG+22] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.
Mitaka: A simpler, parallelizable, maskable variant of.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 222–253. Springer, 2022.

[ETWY22] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.
Shorter hash-and-sign lattice-based signatures.
In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology –
CRYPTO, 2022.

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei
Zhang.
Falcon: Fast-fourier lattice-based compact signatures over ntru.
Submission to the NIST’s post-quantum cryptography standardization process,
36(5), 2018.

https://arxiv.org/abs/1311.2540


References IV
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Practical lattice-based cryptography: A signature scheme for embedded systems.
In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 530–547. Springer, 2012.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan.
Trapdoors for hard lattices and new cryptographic constructions.
In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 197–206, 2008.

[HHGP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H Silverman, and
William Whyte.
Ntrusign: Digital signatures using the ntru lattice.
In Cryptographers’ track at the RSA conference, pages 122–140. Springer, 2003.

[HR07] Ishay Haviv and Oded Regev.
Tensor-based hardness of the shortest vector problem to within almost polynomial
factors.
In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of
Computing, STOC ’07, page 469–477, New York, NY, USA, 2007. Association for
Computing Machinery.



References V

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner.
A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle
model.
In Advances in Cryptology – EUROCRYPT, pages 552–586. Springer, 2018.

[Lyu09] Vadim Lyubashevsky.
Fiat-shamir with aborts: Applications to lattice and factoring-based signatures.
In International Conference on the Theory and Application of Cryptology and
Information Security, pages 598–616. Springer, 2009.

[Lyu12] Vadim Lyubashevsky.
Lattice signatures without trapdoors.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 738–755. Springer, 2012.



Appendix: HAETAE description H. Choe

HAETAE description (high-level)
KeyGen(1λ)

1: Agen←R
k×(ℓ−1)
q and (sgen,egen)←Sℓ−1

η ×Sk
η

2: b=Agen·sgen+egen∈Rk
q

3: A=(−2b+qj| 2Agen| 2Idk) mod 2q and write A=(A1| 2Idk)

4: s=(1,sgen,egen)

5: if σmax(rot(sgen))>γ, then restart

6: Return sk=s, vk=A

Sign(sk,M)

1: y←U(B(1/N)R,(k+ℓ)(B))

2: c=H(HighBitshint2q (A⌊y⌉,α),LSB(⌊y0⌉),M)∈R2

3: z=(z1,z2)=y+(−1)bc·s for b←U({0,1})
4: h=HighBitshint2q (A⌊z⌉−qcj,α)−HighBitshint2q (A1⌊z1⌉−qcj,α) mod+ 2(q−1)

α

5: if ∥z∥2≥B′, then restart
6: if ∥2z−y∥2<B, then restart with probability 1/2

7: Return σ=(Encode(HighBits(⌊z1⌉,a)),LowBits(⌊z1⌉,a),Encode(h),c)

Verify(vk,M,σ=(x,v,h,c))

1: z̃1=Decode(x)·a+v and h̃=Decode(h)

2: w=h̃+HighBitshint2q (A1z̃1−qcj,α) mod+ 2(q−1)
α

3: w′=LSB(z̃0−c)

4: z̃2=[w·α+w′j−(A1z̃1−qcj)]/2 mod ±q

5: z̃=(z̃1,z̃2)

6: Return ( c=H(w,w′,M) ) ∧ ( ∥z̃∥<B′′ ) 30 / 30
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