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Qunatum computing

• Quantum computing (QC): Exploits quantum 
characteristics such as irreversibility, superposition, 
and entanglement as computing processes

• For QC, some algorithms can overcome the 
computational limits of classical computers, which 
have emerged as NP problems.

• New applications leveraging QC are being 
developed: large-scale science computing 
optimization, quantum machine learning

[1] The economist, “How to preserve secrets in a

quantum age,” Jul. 2022, Available in [online]

https://www.economist.com/science-and-

technology/2022/07/13/how-to-preserve-secrets-in-

a-quantum-age



Security Issues on QC Era

• In the field of security, difficulties in solving certain 
mathematical problems in a classical computing have 
been used as the main logic to gaurantee the security 
of cryptography schemes.

• In the advent of QC, new algorithms are proposed that 
threaten their security
➢ For RSA ciphers in theasymmetric cryptography, a number of prime 

factorization problems that ensure the security, are broken by the 
Shor algorithm of quantum computers.

➢ For AES ciphers, Grover's algorithm can be leveraged to reduce the 
complexity of the attack

[2] Bernstein and T. Lange, ``Post-quantum cryptography,'' Nature, vol. 549, pp. 188-194, 2017

[2]



Post quantum Cryptogrpahy
• The US National Institute of Standards and Technology (NIST) predicts that 

existing cryptosystems will not be sufficiently secure for quantum computer 
algorithms

• NIST held a contest to standardize quantum resistant cryptography that can 
replace existing cryptographic systems, and the following algorithms have been 
selected in the current 3rd round
➢ Key encapsulation mechanism: Classic McElicece, Crystal-kyber, NTRU
➢ Signiture: CRYSTALS-DILITHIUM, FALCON, Rainbow

• Many countries including Soth Korea are also triying to develop new 
cryptosystems for post quantum computing era for cryptography contests.



Types of post-quantum cryptography
• It is classified into the following three types according 

to the mathematical design and hardness problem 
that are the basis of security.
➢ Lattice-based cryptostystem
➢ Code-based cryptosystem
➢ Multivariate/hash-based cryptosystem

• The hardness problem, which is the basis of the 
security of quantum resistant cryptography, has not 
yet been fully verified

• Research on cryptographic systems with various 
structures is necessary to prepare for the risk of 
specific schemes being attacked



Code-based PQC
• Most of the code-based cryptography is based on security from the problem 

that it is difficult to guess the codeword from the syndrome value proposed by 
McEliece

• According to the code type, the following cryptosystem has been proposed
➢ Classic McEliece: PKE/KEM, Goppa code based, NIST finalist
➢ HQC: PKE/KEM, Reed-Solomon code based, NIST candidate
➢ BIKE: PKE/KEM, QC-MDPC code based, NIST candidate
➢ ROLLO: PKE/KEM, Rank-metric code based, NIST 2 Round
➢ pqsigRM: Signiture, Reed-Muller code based , NIST 1 Round



Preliminaries: Finite field
• For the design of error correcting codes, concepts of group, ring, field are widely used 
• Understanding of (abstract) algebra is essential

Polynomial ring
Primitive polynomial

Field extension



Preliminaries: Polynomial Ring Arithmetic
• Polynomial (quotient) ring Τ𝔽𝑞𝑚 𝑋 < 𝑃 >

➢ For positive integer 𝑛,𝑚, and 𝑞
➢ Suppose a 𝑛-degree (primitive) polynomial 𝑃 over binary field,
➢ From 𝑛-length vector 𝐩′ = 𝑝1, … 𝑝𝑛 , where 𝑝𝑖 are elements of field 𝔽𝑞𝑚 we 

have the maps Φ and Φ−1 satisfying

𝑃′ 𝑋 =෍
𝑖=0

𝑛−1

𝑝𝑖 mod 𝑃 ∈ Τ𝔽𝑞𝑚
𝑛 𝑋 < 𝑃 >

Φ

Φ−1

𝐩′ = 𝑝1, … 𝑝𝑛



Preliminaries: Polynomial Ring Arithmetic
• Polynomial ring notations for two different moduli

➢ We use 𝑃 and 𝑃𝑏 for the moduli of polynomial moduli, where 𝑃 is a 
𝑛

𝑏
-degree 

primitive polynomial for positive integer 𝑏. Then, we have

𝑃1 𝑋 =෍
𝑖=0

𝑛
𝑏−1

𝑝𝑖 mod 𝑃 ∈ Τ𝔽𝑞𝑚 𝑋 < 𝑃 >

Φ1

Φ1
−1

𝐩1 = 𝑝1, … , 𝑝𝑛
𝑏

𝑃2 𝑋 =෍
𝑖=0

𝑛−1

𝑝𝑖 mod 𝑃
𝑏 ∈ Τ𝔽𝑞𝑚 𝑋 < 𝑃𝑏 >

Φ2

Φ2
−1

𝐩2 = 𝑝1, … , 𝑝𝑛



Preliminaries: Polynomial Ring Arithmetic
• Multiplication notations

➢ For vectors 𝐮, 𝐮′ ∈ 𝔽
𝑞𝑚

𝑛

𝑏 , polynomial 𝑃1 ∈ Τ𝔽𝑞𝑚 𝑋 < 𝑃 >, and map Φ1, we have

𝐮𝐮′ mod P = Φ1
−1(Φ1(𝐮)Φ1(𝐮

′)) = σ
𝑖=0

𝑛

𝑏
−1
σ𝑗=0
𝑖 𝑢𝑖−𝑗𝑢𝑗

′ 𝑋1
𝑖𝑚𝑜𝑑 𝑃

𝑃1𝐮
′ mod P = Φ1

−1(𝑃1Φ1(𝐮
′)) = σ

𝑖=0

𝑛

𝑏
−1
𝑃1𝑢𝑖 𝑋1

𝑖𝑚𝑜𝑑 𝑃

Vector-vector multiplication

Polynomial-vector multiplication



Preliminaries: Polynomial Ring Arithmetic
• Conversion maps between two moduli

➢ For the conversion, we use the two maps Ψ and Ω asxc

𝑃1 =෍
𝑖=0

𝑛
𝑏−1

𝑝𝑖 mod 𝑃 ∈ Τ𝔽𝑞𝑚 𝑋 < 𝑃 >

Ψ 𝑃1 =෍
𝑖=0

𝑛
𝑏−1

𝑝𝑖 mod 𝑃 ∈ Τ𝔽𝑞𝑚 𝑋 < 𝑃𝑏 >

Ψ

𝑃2 =෍
𝑖=0

𝑛−1

𝑝𝑖 mod 𝑃 ∈ Τ𝔽𝑞𝑚 𝑋 < 𝑃𝑏 >

Ω

Ω 𝑃2 =෍
𝑖=0

𝑛−1

𝑝𝑖 mod 𝑃 ∈ Τ𝔽𝑞𝑚 𝑋 < 𝑃 >



Preliminaries: Polynomial Ring Arithmetic
• Equvalent circulent matrix conversion

➢ 𝑛-tuple vector 𝐯(or polynomial 𝐯(X)) can be converted into the circulant matrix
➢ The vector from vector-vector multiplication 𝐮𝐮′mod 𝑃 is equal to that from 

matrix-vector multiplication of 𝐮ℐ 𝐮′ orℐ(𝐮)𝐮′ (Ideal condition)

ℐ 𝐯 =

𝐯
𝑋𝐯 mod 𝑃

…
𝑋𝑛−1𝐯 mod 𝑃

⊤
ℐ

ℐ −1

𝐯 = 𝑣1, 𝑣2, … , 𝑣𝑛



Preliminaries: Polynomial Ring Arithmetic
• Some useful properties: Proposition 1

➢ If σ𝑖∈ 𝐼 deg 𝐮𝑖 𝑋1 < 𝑛 for integer set 𝐼, we have

ෑ
𝑖∈ 𝐼

𝐮𝑖 𝑋1 mod 𝑃 = Ω ෑ
𝑖∈ 𝐼

Ψ 𝐮𝑖 𝑋1 mod 𝑃𝑏

• Proof sketch) From ς𝑖∈ 𝐼 Ψ 𝐮𝑖 𝑋1 mod 𝑃𝑏 , the polynomial reduction is 

not occurred by 𝑃𝑏 if σ𝑖∈ 𝐼 deg 𝐮𝑖 𝑋1 < 𝑛. Therefore, it returns the same results 



Preliminaries: Hamming metric and codes
• Hamming weight of vector wt𝐻 𝐯 or 𝐯 : Defined as the number of nonzero 

elements for 𝑛-tuple vector 𝐯 = 𝑣1, 𝑣2, … , 𝑣𝑛 ∈ 𝔽𝑞𝑚
𝑛

• 𝑛, 𝑘 𝔽𝑞𝑚 −linear codes: 𝔽𝑞𝑚 −linear code 𝐶 is defined by subset with 𝑞𝑘-

cardinality consisting of 𝑛-tuple vectors 𝐜𝑖 in 𝐶 = 𝐜1, 𝐜2, … , 𝐜𝑞𝑘 ⊂ 𝔽𝑞𝑚
𝑛

• Minimum Hamming weight wt𝐻 𝐶 of 𝔽𝑞𝑚 −linear code 𝐶: For a codeword 𝐜𝑖, 

wt𝐻 𝐶 = min
𝐜𝑖⊂𝐶

wt 𝐜𝑖

• 𝑛, 𝑘, 𝑑 𝔽𝑞𝑚 −linear codes: 𝑛, 𝑘, 𝑑 𝔽𝑞𝑚 −linear code 𝐶 is defined by 𝑛, 𝑘

𝔽𝑞𝑚 −linear codes with minimum Hamming weight w𝐻 𝐶 = 𝑑



Preliminaries: Hamming metric and codes
• From a codeword 𝐜 in 𝑛, 𝑘, 𝑑 𝔽𝑞𝑚 −linear code 𝐶, additive error vector 𝐞 with 

𝐞 <
𝑑−1

2
can be corrected from a received word 𝐫 = 𝐜 + 𝐞 by sphere packing 

lemma



Preliminaries: Rank metric representation

• From an 𝑛-length vector 𝐯 = 𝑣1, 𝑣2, … , 𝑣𝑛 ∈ 𝔽𝑞𝑚
𝑛

➢ Let 𝛽 be an element of 𝑚-degree primitive polynomial satisfying

𝑣𝑖 =෍
𝑗=0

𝑚−1

𝑣𝑖𝑗𝛽
𝑗

➢ Then, the vector 𝐯 can be converted into the matrix 𝑀 𝐯 ∈ 𝔽𝑞𝑚
𝑛

➢ Then, the rank weight of vector wt𝑅 𝐯 or 𝐯 is defined as a rank of the 

matrix 𝑀 𝐯

𝑀 𝐯 =

𝑣11 𝑣21 … 𝑣𝑛1
… … … …
𝑣1𝑚 𝑣2𝑚 … 𝑣𝑛𝑚

𝑀 ∙
𝐯 = 𝑣1, 𝑣2, … , 𝑣𝑛



Preliminaries: Rank metric codes

• Minimum rank weight w𝑡𝑅 𝐶 of 𝔽𝑞𝑚 −linear code 𝐶: For a codeword 𝐜𝑖, 

w𝑅 𝐶 = min
𝐜𝑖⊂𝐶

𝑤𝑡 𝐜𝑖

• 𝑛, 𝑘 𝔽𝑞𝑚 −linear codes with rank weight 𝑑: 𝑛, 𝑘 𝔽𝑞𝑚 −linear code 𝐶 is defined 

by 𝑛, 𝑘 𝔽𝑞𝑚 −linear codes with minimum rank weight w𝑟 𝐶 = 𝑑

• From a codeword 𝐜 in 𝑛, 𝑘 𝔽𝑞𝑚 −linear code 𝐶 with rank weight 𝑑, additive 

error vector 𝐞 with 𝐞 <
𝑑−1

2
can be corrected from a received word 𝐫 = 𝐜 + 𝐞

by sphere packing lemma



Goodness of rank weight code
• Correcting low-rank error can be advantageous for correcting the correlated 

multiple errors

1 0 … 0

1 0 … 0

… … … …

1 0 … 0

• Suppose that a codeword has a 
2-D placement in 

• Column-wise errors are occurred

Error vector 𝐞 and 𝑀(𝐞)
From Hamming weight metric

From rank weight metric

𝐞 = column length
Multi-error
correctable codes 
should be used 

𝐞 = 1

Single-error correctable 
codes are sufficient



Hamming metric and rank metric codes
• Properties

• Product (sub)space and Hamming/rank weight

• Code design
➢ Hamming metric codes: maximum distance separable (MDS) codes, moderate-density 

parity check (MDPC) code, low-density parity-check (LDPC) codes
➢ Rank metric codes: Maximum rank distance (MRD) codes, Low-rank parity-check (LRPC) 

codes

• Hardness problem
➢ Hamming metric codes: (Hamming) Syndrome decoding problem
➢ Rank metric codes: Rank syndrome decoding (RSD) problem

• Cryptosystem
➢ Hamming metric codes: HQC(MDS code based), BIKE (LDPC code based)
➢ Rank metric codes: RQC(MRD code based), ROLLO (LRPC code based)



Product subspace and rank weight
• For the properties of Hamming metric code

➢ 𝔽𝒒𝒎 −subspace(~𝔽𝒒𝒎 − linear code)

➢ Product subspace
❖ Generally, For two 𝔽𝑞𝑚 −spaces(or linear codes) 𝐶1 and 𝐶2, product space 𝐶1𝐶2 = 𝐶1 ∩ 𝐶2 can be 

generated
❖ For the 𝔽𝑞𝑚 −subspace 𝐶1, 𝐶2 with Hamming weight 𝑟 and 𝑑, Hamming weight of 𝐶1𝐶2 is lower than 

≤ 𝑟𝑑 (If Hamming weight 𝑟 and 𝑑 is low, most probably, the weight of 𝐶1, 𝐶2 equal to 𝑟𝑑)

• For the properties of rank metric code
➢ 𝔽𝒒-Subspace

❖ Support(generating) set supp 𝐯 =< 𝑣1, … , 𝑣𝑛 > for each element of 𝐯 = 𝑣1, 𝑣2, … , 𝑣𝑛 ∈ 𝔽𝑞𝑚
𝑛

➢ Product subspace
❖ If rank weights weight 𝑟 and 𝑑 is low, most probably, the weight of 𝐸𝐹 equal to 𝑟𝑑
❖ For two 𝔽𝒒 −subspaces 𝐸 = supp 𝐮 =< 𝑢1, … , 𝑢𝑛 > and 𝐹 = supp 𝐯 =< 𝑣1, … , 𝑣𝑛 >, product space 

can be represented as 𝐸𝐹 = supp 𝐮𝐯 mod 𝑃



Hamming metric and rank metric codes

• For Hamming metric MDS codes:
➢ MDS codes achieves the Singleton bound: 𝑑 ≤ 𝑛 − 𝑘 + 1
➢ Reed-Solomon codes is MDS codes with PCM 𝐀 with 

Vandermonde matrix
➢ RS codes are used for PQC scheme HQC

(NIST Candidate, PKE/KEMs)

• For rank metric MRD codes
➢ MRD codes achieves the Singleton bound: 𝑑 ≤

𝑚

𝑛
𝑛 − 𝑘 + 1

➢ Gabidulin code is MRD codes with generator matrix 𝐆
➢ Gabidulin codes are used for RQC(NIST Candidate, PKE/KEMs)

(NIST 2 Round Submission, PKE/KEMs)



Hamming metric and rank metric codes
• For Hamming metric MDPC/LDPC codes(in BIKE)

➢ For codelength 2𝑛 𝐜 ∈ 𝒞, LDPC codes is binary linear codes with 𝑛 × 2𝑛-sized PCM 𝐇 using two 
circulant matrices 𝐇1 and 𝐇2 of

𝐇 = 𝐇1 𝐇2 , 𝐇1 =

𝐡1
𝑋𝐡1 mod 𝑋𝑛 − 1

…
𝑋𝑛−1𝐡1 mod 𝑋𝑛 − 1

⊤

,

𝐇2 =

𝐡2
𝑋𝐡2 mod 𝑋𝑛 − 1

…
𝑋𝑛−1𝐡2 mod 𝑋𝑛 − 1

⊤

,where 𝑛-tuple random two vectors 𝐡1 and 𝐡2 satisfying 𝐡1 ≤ 𝑑 and 𝐡2 ≤ 𝑑



Hamming metric and rank metric codes
• For rank metric ideal LRPC codes(in ROLLO)

➢ For codelength 2𝑛 𝐜 ∈ 𝒞, Ideal LRPC codes is 𝔽𝑞𝑚 −linear codes with 𝑛 × 2𝑛-sized PCM 𝐇

𝐇 = 𝐇1 𝐇2 , 𝐇1 =

𝐱
𝑋𝐱mod 𝑃

…
𝑋𝑛−1𝐱mod 𝑃

⊤

, 𝐇2 =

𝐲
𝑋𝐲 mod 𝑃

…
𝑋𝑛−1𝐲 mod 𝑃

⊤

where 𝔽𝑞-subspace 𝐹 with rank weight 𝑑 in 𝔽𝑞𝑚 , 𝑛-degree polynomial 𝑃 ∈ 𝐹𝑞 𝑋 , and 𝑛-tuple

random two vectors 𝐱 and 𝐲 in 𝐹

➢ Note that we have 𝐇1
−1 =

𝐱−𝟏

𝑋𝐱−𝟏mod 𝑃
…

𝑋𝑛−1𝐱−𝟏mod 𝑃

, 𝐇1
−1𝐇2 =

𝐱−𝟏𝐲

𝑋𝐱−𝟏𝐲 mod 𝑃
…

𝑋𝑛−1𝐱−𝟏𝐲 mod 𝑃

⊤



Hamming metric and rank metric codes
• Hamming metric codes: Syndrome decoding problem (SD)

➢ For a syndrome vector 𝐬, it is hard to find a vector 𝐞 lower than the Hamming weight 𝑤, 
on the condition that 𝐇𝒆𝑻 = 𝐬𝑇

➢ Known as NP-Complete

• Rank metric codes: Rank syndrome decoding problem (RSD)
➢ For a syndrome vector 𝐬, it is hard to find a vector 𝐞 lower than the rank weight 𝑤, on the 

condition that 𝐇𝒆𝑻 = 𝐬𝑇

➢ If RSD is in ZPP, the problem is NP(asymptotically, NP) [3]

• Rank metric codes: Ideal-Rank syndrome decoding problem (I-RSD)
➢ For a vector 𝐡 and syndrome vector 𝐬, it is hard to find a vector 𝐞 = (𝐞𝟏, 𝐞𝟐) lower than the 

rank weight 𝑤 satisfying the condition that 𝐞1 + 𝐞2𝐡 𝑚𝑜𝑑 𝑃 = 𝐬.

[3] P. Gaborit and G. Zemor, On the Hardness of the Decoding and the Minimum Distance Problems for Rank Codes," IEEE Trans. Inf. Theo., vol. 62, No. 12, pp.

7245-7252, 2016



Indistinguishability
• Indistinguishability

➢ It is difficult to distinguish or recover the structural characteristics of the codeword 
from the specific word generated by message and parity combination

• For Hamming metric codes: Indistinguishability of MDPC/LDPC codes
➢ For the circulant matrix 𝐇1 and 𝐇2with small Hamming row weight 𝑑, it is hard to 

distinguish between the uniformly sampled random matrix 𝑅 and 𝑯1
−𝟏𝑯𝟐.

• For rank metric codes: Indistinguishability of ideal LRPC codes
➢ For vectors 𝐱 and 𝐲 with small rank weight 𝑑, it is hard to distinguish between the 

uniformly sampled random vector 𝐡 and 𝐱−𝟏𝐲 mod 𝑃.
➢ Application for the cryptosystem (ROLLO): 𝐱−𝟏𝐲mod 𝑃 can be used for PK in a 

cryptosystem with a public key (PK) 𝐱−𝟏𝐲 mod 𝑃.



Existing ROLLO Schemes

𝐱 𝐲

• Alice and Bob wants to have a shared key. 
For this,
➢ Key generation: Alice generates public key 

(PK) and secret key (SK)
➢ Encapsulation: Bob generate ciphertext (CT) 

to encapsulate SS using PK
➢ Decapsulation: Alice decapsulate CT to obtain 

SS using SK

1. Key generation

➢ Generate Low-rank 𝔽𝑞-subspace 𝐹 ∈ 𝔽𝑞𝑚
𝑛

with rank weight 𝑑
➢ Select a random vector 𝐱, 𝐲 ∈ 𝐹
➢ Generate PK and SK as

❖ PK: 𝐡 = 𝐱−𝟏𝐲 mod P
❖ SK: < 𝐱, 𝐲 >

𝐱−𝟏𝐲 mod P = 𝐡

Parity check 
vector

Public key (PK)

2𝑛

𝔽𝑞-subspace 𝐹 with Low-rank 

weight 𝑑

Secret key (SK)

Alice

To public, including Bob



Existing ROLLO Schemes
2. Encapsulation

➢ Generate Low-rank 𝔽𝑞-subspace 𝐸 ∈

𝔽𝑞𝑚
𝑛

with rank weight 𝑟

➢ Generate 𝑛 −tuple two error 
vector 𝒆1, 𝒆2 ∈ 𝐸

➢ Transmit 𝒄 = 𝐞𝟏 + 𝐡𝐞𝟐 mod P
➢ Generate Hash(𝐸)  for shared secret (SS)

3. Decapsulation
➢ From SK 𝐱 derive 𝐱𝒄 mod 𝑃 = 𝐱𝐞𝟏 +

𝐲𝐞𝟐 mod 𝑃
➢ Recover 𝔽𝑞-subspace 𝐸 in the rank 

support recovery (RSR) algorithm
➢ Verify the correctness by comparing 

recovered has 𝐸′ with received SS Hash(𝐸).
➢ with Hash(𝐸′)=Hash(𝐸)

𝒆𝟏

SK 𝐱

PK
𝐡 = 𝐱−𝟏𝐲

2𝑛

𝒄 = 𝐞𝟏 + 𝐡𝐞𝟐

𝐱𝒄 = 𝐱𝐞𝟏 + 𝐲𝐞𝟐

Rank support 
recovery algorithm

Bob

Alice

𝔽𝑞-subspace 𝐸 with Low-rank 

weight 𝑟 (Shared key)

𝒆𝟐

CT 𝒄

Recovered 
𝔽𝑞-subspace 𝐸′

Hash(𝐸)

SS Hash(𝐸 )

Check correct
-ness by Hash(𝐸′)



RSR decoding algorithm
• Sketch of the RSR algorithm

➢ Using 𝔽𝑞-subspace 𝐹 and SK 𝐱, 𝐲, recover the 𝔽𝑞-subspace 𝐸 from 𝐱𝐞𝟏 + 𝐲𝐞𝟐 mod 𝑃

➢ Main contribution 
❖ 1. Calculate 𝐱𝒄 = 𝐱𝐞𝟏 + 𝐲𝐞𝟐
❖ 2. Derive 𝐟𝑖

−𝟏𝐱𝒄 from linearly independent vectors in 𝐹 =< 𝐟1, 𝐟2, … , 𝐟𝑑 >

❖ 3. Recover the support From 𝐸′ = ∋𝑖ځ 𝑑 𝐟𝑖
−𝟏𝐱𝐜

➢ Required complexity: 𝒪 𝑟2𝑑3𝑚

➢ DFR (decryption failure rate): Lower than 𝑞− 𝑟𝑑−𝑛

• Remarks
➢ For lower values 𝑟, 𝑑, a lower decoding complexity can be expected



Rank Syndrome Decoding (RSD) algorithm
• Rank syndrome decoding (RSD algorithm)

➢ By recovering 𝐸 or 𝐹, generic or structural attacks was proposed, which determines the 
security level of the cryptosystem
❖ Generic attacks: In order to recover 𝐹, derive all the combination with rank weight 𝑑

(required complexity ~Ω 𝑞𝑑 ) first. The best strategy needs the complexity of 

𝒪 𝑛3𝑚3𝑞
𝑑

𝑚

2
−𝑚−𝑛

❖ Structural attacks: In order to recover 𝐹, derive all the combination with rank weight 𝑟
(required complexity ~Ω 𝑞𝑟 ), first. The best strategy needs the complexity of

𝒪 𝑛3𝑚3𝑞
𝑟
𝑚(𝑛+1)

2𝑛
−𝑚

• Remarks
➢ For lower values 𝑟, 𝑑, we can obtain a lower security level, which lowers the security of the 

cryptosystem



New design criteria for the proposed KEM
• Thus, the public key is designed from the ideal LRC codes with the small 

codelength, small rank weights 𝒓 and 𝒅, and the following conditions
➢ 1st condition: All the operation is based on the polynomial ring
➢ 2nd condition: a low-rank codeword is not shown in the attacker
➢ 3rd condition: Properties of codeword are not specified in the ciphertext

ℐ 𝐱−𝟏𝐲mod 𝑃,
𝑛

𝑏

𝑛

𝑏

ℐ 𝐱−𝟏𝐲mod 𝑃,
𝑛

𝑏𝐱, 𝐲, 𝐡 = 𝐱−𝟏𝐲 mod 𝑃
Inner polynomial 𝑃𝐼 ∈ 𝔽𝑞𝑚 𝑋 /< 𝑃 >

Outer polynomial 𝑃𝑂

Random vectors smaller 
codelength and low rank 
weights 𝒓

𝐳 = 𝑃𝐼𝐱
−𝟏𝐲 mod 𝑃

𝑃𝐻 = 𝑃𝑂Ψ 𝒛 X1 + 𝑃𝑁𝑃 mod P𝑏 ∈ 𝔽𝑞𝑚 𝑋 /< 𝑃𝑏 >

𝑃𝑁: Random 
polynomial 𝑃𝑁 ∈
𝔽𝑞𝑚 𝑋 /< 𝑃𝑏 >

Ψ(⋅)

Outer 
codes

Inner 
codes



Layered ROLLO-I: Procedures
1. Key generation

➢ Generate two random vectors 𝐱 and 
𝐲 from the low-rank 𝔽𝑞-subspace 𝐹 ∈

𝔽𝑞𝑚
𝑛

𝑏 with rank weight 𝑑

➢ Generate 𝑏-degree and 𝑛-degree 
random polynomials 𝑃𝐼 and 𝑃𝑂.

➢ Generate 𝐳 and 𝑃𝐻 as
❖ 𝐳 = 𝑃𝐼𝐱

−𝟏𝐲 mod 𝑃, 

❖ 𝑃𝐻 = 𝑃𝑂Ψ 𝒛 X1 + 𝑃𝑁𝑃 mod P𝑏

➢ Finally, construct SK and PK as
❖ PK: 𝑃𝐻, 𝑃𝑃 = Ψ(𝑃𝐼)𝑃𝑂 mod 𝑃

𝑏

(NOTE: We use an additional key size by 

𝑃𝑃, which amounts to 
𝑛log2𝑚

8
[Byte])

❖ SK: 𝐱 , 𝐲, 𝑃𝑂, 𝑃𝐼

2nd cond.

3rd cond.

𝐱
𝐲

𝐳 = 𝑃𝐼𝐱
−𝟏𝐲

𝑃𝐻 = 𝑃𝑂Ψ 𝒛 X1 + 𝑃𝑁𝑃

𝑃𝑃 = Ψ(𝑃𝐼)𝑃𝑂

𝑛

mod 𝑃

mod 𝑃𝑏

𝑃𝐻 , 𝑃𝑃 PK

SK

𝑃𝐼

𝑃𝑂

mod 𝑃𝑏

𝑛

𝑏

𝑏
1st cond.

Low-rank 
polynomial 𝐹

Random 
polynomials

To public, 
including Bob



Layered ROLLO-I: Procedures
2. Encapsulation

➢ Generate Low-rank 𝔽𝑞-subspace 𝐸 ∈

𝔽𝑞𝑚
𝑛

𝑏 with rank weight 𝑟

➢ Generate 
𝑛

𝑏
−tuple two error 

vector 𝒆1, 𝒆2 ∈ 𝐸
➢ Obtain CT polynomial 𝑃𝐶 as

𝑃𝐶 = 𝑃𝑃𝑃𝐸,1 + 𝑃𝐻𝑃𝐸,2 𝑚𝑜𝑑 𝑃𝑏

➢ Obtain 𝐤1 = 𝐻𝑎𝑠ℎ 𝐸 to have a 
shared secret (SS)

𝐞𝟏
𝐞𝟐

𝑛

𝑏

Low-rank 
polynomial 𝐹

𝑃𝑃

𝑛

𝑃𝐻

Public key

𝑃𝐸,1 = Ψ 𝒆1 X , 𝑃𝐸,2 = Ψ 𝒆2 X

𝑃𝐶 = 𝑃𝑃𝑃𝐸,1 + 𝑃𝐻𝑃𝐸,2
𝐤1 = 𝐻𝑎𝑠ℎ(𝐸)

mod 𝑃𝑏

mod 𝑃𝑏

𝑃𝐶 , CT
𝒌1, SS To public, 

including Alice

From Alice

Shared 
key



Layered ROLLO-I: Procedures

3. Decapsulation
➢ Obtain the codeword 𝐱𝐜′′ = 𝐱𝐞1 +

𝐲𝐞2mod 𝑃
from 𝑃𝐶 by

❖ 𝑃𝐶
′ = 𝑃𝑂

−1𝑃𝐶 mod 𝑃
𝑏

❖ 𝒄′′ = Φ1
−1 𝑃𝐼

−1 Ω 𝑃𝐶
′ mod 𝑃

❖ 𝐱𝒄′′mod 𝑃 = 𝐱𝐞1 + 𝐲𝐞2 mod 𝑃

➢ From 𝐱𝒄′′mod 𝑃, recover the support 𝐸′

by the RSR algorithm
- Derive shared key 𝐤𝟐 = 𝐻𝑎𝑠ℎ 𝐸′ and if 

𝐤𝟏 = 𝐤𝟐, use the support 𝐸′ as a shared 
key

𝑃𝐶
′ = 𝑃𝑂

−1𝑃𝐶

𝐜′′ =

Φ1
−1 𝑃𝐼

−1 Ω 𝑃𝐶
′

Alice

𝐱𝒄′′mod 𝑃 =
𝐱𝐞1 + 𝐲𝐞2mod 𝑃

Recover the support 𝐸′

by the RSR algorithm

𝑚𝑜𝑑 𝑃𝑏

𝑚𝑜𝑑 𝑃

𝑚𝑜𝑑 𝑃

𝐱
𝐲

𝑛

𝑏

Recovered 
Support 𝐸′

SS 𝒌𝟏CT 𝑃𝐶

shared key 
𝐤𝟐 = 𝐻𝑎𝑠ℎ 𝐸′

Check
𝒌𝟏 = 𝒌𝟐

From Bob

Shared key



Layered ROLLO-I: Procedures

• In the decapsulation phase

𝑃𝐶
′ = 𝑃𝑂

−1𝑃𝐶

𝐜′′ =

Φ1
−1 𝑃𝐼

−1 Ω 𝑃𝐶
′

Alice

𝐱𝒄′′mod 𝑃 =
𝐱𝐞1 + 𝐲𝐞2mod 𝑃

𝑚𝑜𝑑 𝑃𝑏

𝑚𝑜𝑑 𝑃

𝑚𝑜𝑑 𝑃

CT 𝑃𝐶

…

(1)

(2)

(3)

(1)

(2)

(3)

𝑃𝐼𝐞1 mod P

𝑃𝐼𝐱𝐲
−𝟏𝒆𝟐

mod P

𝟎mod P



Computational Complexity Analysis
• Compared to ROLLO-I, there are several advantages and drawbacks of the 

proposed approach regarding its computational complexity
➢ Advantage: Key generation and decapsulation

❖ Parameters 𝒓 or 𝒅(rank weight): For RSR algorithm in decapsulation, the complexity 
from lower 𝑟 or 𝑑 is decreased by the quadratic or cubic level ( with 𝒪 𝑟2𝑑3𝑚 )

❖ Parameter 𝒃: It did not change the complexity RSR algorithm. However, small 
codelength is better for the key generation and lower DFR

➢ Drawback: Key generation, encapsulation, and decapsulation
➢ For the overall procedure, additional operation regarding m𝑜𝑑 𝑃𝑏 is necessary, which 

increase the complexity
➢ Especially, the complexity for computing inverse of 𝑃𝐼 and 𝑃𝑂 is high

❖ Larger 𝑏 increase the complexity for invese of 𝑃𝐼, 𝑃𝑂 and m𝑜𝑑 𝑃𝑏 operation and 
thus, lower 𝑏 is better



Security Analysis
• Indistinguishability: In the existing PK 𝐡 = 𝐱−𝟏𝐲, new public key 𝑃𝐻 multiplying two random 

polynomial 𝑃𝐼 and 𝑃𝑂 do not change the property 

• Possible Attack Scenarios: Firstly, we should check some attack scenarios by the additional 
PK information 𝑃𝑃
➢ Direct attack: Using the equation 𝑃𝑃

−1𝑃𝐶 mod 𝑃
𝑏

❖ 𝑃𝐼
−1𝑃𝑂

−1𝑃𝑐𝑚𝑜𝑑 𝑃
𝑏 𝑚𝑜𝑑 𝑃 returns the different polynomials from 

𝑃𝐼
−1 𝑃𝑂

−1𝑃𝐶 𝑚𝑜𝑑 𝑃
𝑏 𝑚𝑜𝑑 𝑃

❖ By Deg 𝑃𝐼
−1 ~

𝑛

𝑏
and Deg(𝑃𝑂

−1)~𝑛, reduction for Proposition 1 is not applied

➢ Polynomial attack: Using the information on 𝑃𝑃
❖ An attack cannot guess 𝑃𝑂 and 𝑃𝐼 from the degree or coffeicients on 𝑃𝑃(indistinguishability)



Security Analysis
• Existing Attacks on Generalized 

concatenated (GC) codes [3]
➢ Motivation: The proposed KEM can be 

considered as an encoding process of 
generalized concatenated (GC) codes

➢ Then, the attack can be analyzed using 
the existing Sendrier’s attack
❖ Sendrier’s attack consists of two 

phases
❖ 1st phase: From the multiple 

observation of codewords, firstly find a 
structure of the inner codes

❖ 2nd phase: Based on this, recover the
outer codes

[3] S Puchinger, S. Muelich, K. Ishak, and M. Bossert, ``Code-based cryptosystems using generalized 
concatenated codes,'' \textit{App. of Comp. Alg.}, Kalamata:Greece, Jul. 20-23, 2015.

Outer encoder Inner encoder

Ideal LRPC codes
Cyclic codes with 
generator 𝑷𝑰 and 𝑷𝑶

Outer decoder Inner decoder

𝐞1, 𝐞2

CT

CT

𝐞1, 𝐞2

Proposed cryptosystem

Attackers’ approach



Security Analysis
• For an attack scenario in the proposed KEM

➢ 1st Phase
❖ Attacker do not collect a multiple codeword because generator polynomials 𝑃𝐼 and 𝑃𝑂 of 

the inner code are changed in each CT
❖ Instead, attack can guess 𝑃𝑂 or 𝑃𝐼 and if the exact polynomial is found, they can proceed to 

the 2nd phase 

❖ If the attack guess 𝑃𝐼(easier than guessing 𝑃𝑂), the required complexity is 𝒪( 𝑞 𝑏−1 𝑚) by 
guessing each coefficients of the codes

❖ For each guessing, the attacker should proceed to the 2nd phase because attacker cannot 

convince the exact value only from guessed 𝑃𝐻
′

➢ 2nd Phase
❖ In each case, attacker use  the existing attacks for the ideal LRPC codes.

➢ Total complexity

❖ Generic attack: Complexity amounts to 𝒪 𝑞(𝑏−1)𝑚 ×
𝑛
𝑛

𝑏

2
𝑚3𝑞

σ𝑖∈[1,𝑏] 𝑑𝑖
3 𝑚

2
−𝑚−

𝑛

𝑏

❖ Structural attack: Complexity amounts to 𝒪 𝑞(𝑏−1)𝑚 ×
𝑛𝑚

𝑏

3
𝑞
𝑟
𝑚

𝑛
𝑏
+1

2𝑛
𝑏

−𝑚



Suggested Parameters
• Suggested parameter for the proposed KEM

➢ 𝐷𝑐 decareaes, size of PK increase, Other parameters are maintained



Implementation environments
• RBC(Rank-based cryptography) library

➢ RBC is an open-source library for rank-
metric code-based PQC in 2021 which 
includes operations MRD and LRPC 
codes

➢ Consists Python Wrapper, mainly C 
language with AVX-2 instruction for 
Intel CPU

• Simulation environment
➢ The 12th Gen. Intel® Core™ i9-12900K 

multi-core CPU with AVX-2 support
➢ 32GB DDR5 4.800MHz memory
➢ Ubuntu Linux 20.04 LTS
➢ Measured as an worst processing cycle in 

the 100 iteration

ROLLO-I-128

Prop-128



Code implementation method
• Essential library: python3, python-yaml, cmake, make, gcc, openssl

• Implementation method: Mainly use the functions in RBC library, and adds some functions 
and parameters for the additional functionality

• New code builds the performance results and KAT for proposed KEM and existing ROLLO-I 
together, thus their performances can be directly compared.
➢ Build command: python rbc-lib.py
➢ Execution command: ./bin/biix_XXX
➢ KAT(Known answer test) generation command: ./bin/kat_biix_XXX
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Code performance analysis
• Performance measure: The number of CPU processing cycle for key generation, 

encapsulation, and decapsulation
➢ The proposed KEM have processing cycle reduction by 40-70% for the same security 

level compared to the existing ROLLO-I



Conclusion
• In this study, research is conducted to improve rank-based codes and ROLLO-I,

which have the advantage of small key size among quantum resistant
cryptography, through a new block-based hierarchical structure

➢ The proposed method reduces the rank weight of the ideal LRPC code used in ROLLO-I to a
small size, and introduces a hierarchical structure for compensating the decrease in
security level

➢ Compared to the existing ROLLO-I the proposed parameters utilize an increased public key
size, but have the advantage of faster cryptographic operation

➢ This can be used to solve the problem for high decoding complexity, which is one of the
major difficulties of rank-based codes and the proposed approach makes rank-based
encryption systems more competitive.



Further Information
• KPQC Hompage: https://kpqc.or.kr/competition.html(Documents and source code for 1 round submission)
• Cryptography Arxiv: Layered ROLLO-I: Faster rank-metric code-based KEM using ideal LRPC codes (iacr.org)
• Layered-ROLLO-I Homepage: To be announced shortly
• Or contact me (carisis@jbnu.ac.kr)

https://eprint.iacr.org/2022/1572
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