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Qunatum computing

« Quantum computing (QC): Exploits quantum
characteristics such as /rreversibility, superposition,
and entanglement as computing processes

« For QC, some algorithms can overcome the

computational limits of classical computers, which
have emerged as NP prOblemS [1] The economist, "How to preserve secrets in a
quantum age,” Jul. 2022, Available in [online]
. . . . https://www.economist.com/science-and-
* New applications leveraging QC are being technology/2022/07/13/how-to-preserve-secrets-in-
developed: large-scale science computing a-quantum-age

optimization, quantum machine learning



Security Issues on QC Era

Table 1 | Examples of widely deployed cryptographic systems and

* In the field of security, difficulties in solving certain

mathematical problems in a classical computing have

MNarme Function security level  security level
M M M Symmetric cryptograph
been used as the main logic to gaurantee the security
f t h h AES-256% fiﬂs:s{lt;: 256 128 (Grover)
O Cryp Ograp y SC emes' Salsa20™ Syrnsr}:c_triu 256 128 (Grover)
GMAC™ Ektr:yphon 128 128 (no impact)
Poly13055° MAC 128 128 (no impact)
M SHA-2565" ) Hash function 256 128 (Grover)
 In the advent of QC, new algorithms are proposed that g e 2 ey
. . RSA-30?2:' E!ﬂ{.:l";,-’pﬁ(_l,l'l 128 Broktin (Shor)
threaten their security eI oM S i
. . . . DSA-30728364 Signature 128 Broken (Shor)
> For RSA ciphers in theasymmetric cryptography, a number of prime BOBECONS  Keyechnge 128 EkenGhon
factorization problems that ensure the security, are broken by the Sy ot s e o ke e o B s
Shor algorithm of quantum computers. et sy s e e e e

» For AES ciphers, Grover's algorithm can be leveraged to reduce the [2]
complexity of the attack

[2] Bernstein-and T. Lange, "Post-quantum cryptography,' Nature, vol. 549, pp. 188-194, 2017



Post quantum Cryptogrpahy

« The US National Institute of Standards and Technology (NIST) predicts that

existing cryptosystems will not be sufficiently secure for quantum computer
algorithms

« NIST held a contest to standardize quantum resistant cryptography that can

replace existing cryptographic systems, and the following algorithms have been
selected Iin the current 3rd round

» Key encapsulation mechanism: Classic McElicece, Crystal-kyber, NTRU
» Signiture: CRYSTALS-DILITHIUM, FALCON, Rainbow

« Many countries including Soth Korea are also triying to develop new
cryptosystems for post quantum computing era for cryptography contests.
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Types of post-quantum cryptography

It is classified into the following three types according

to the mathematical design and hardness problem - |
that are the basis of security.
> Lattice-based cryptostystem CSTeTeToTo o i oo o ]

» Code-based cryptosystem .

» Multivariate/hash-based cryptosystem

« The hardness problem, which is the basis of the
security of quantum resistant cryptography, has not
yet been fully verified

« Research on cryptographic systems with various
structures is necessary to prepare for the risk of AT A ]
specific. schemes being attacked ST
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Code-based PQC

« Most of the code-based cryptography is based on security from the problem
that it is difficult to guess the codeword from the syndrome value proposed by
McEliece

« According to the code type, the following cryptosystem has been proposed
Classic McEliece: PKE/KEM, Goppa code based, NIST finalist

HQC: PKE/KEM, Reed-Solomon code based, NIST candidate

BIKE: PKE/KEM, QC-MDPC code based, NIST candidate

ROLLO: PKE/KEM, Rank-metric code based, NIST 2 Round

pgsigRM: Signiture, Reed-Muller code based , NIST 1 Round

YVVVYVYY

ROLLO -

Rank-Ouroboros, LAKE
BIKE

April 21, 2020



Preliminaries: Finite field

« For the design of error correcting codes, concepts of group, ring, field are widely used
« Understanding of (abstract) algebra is essential

'Group—

P P Abelian Group T~ M

Polynomial ring
Primitive polynomial

Commutative

Ring

Field extension

10 1
010 0
110 1




Preliminaries: Polynomial Ring Arithmetic

* Polynomial (quotient) ring F n[X]/< P >

» For positive integer n,m,and g
» Suppose a n-degree (primitive) polynomial P over binary field,
» From n-length vector p’ = (p4, ...p,), Where p; are elements of field F m we

have the maps ® and ®~1! satisfying

D

> n-—1
p' = (P, ..Pn) | P'(X) = z p; mod P € IFZm[X]/< P>
o1 1=0




Preliminaries: Polynomial Ring Arithmetic

« Polynomial ring notations for two different moduli
> We use P and P? for the moduli of polynomial moduli, where P is a %—degree

primitive polynomial for positive integer b. Then, we have

. n_,
P1 = (Pr-PR) P,(X) = zb p; mod P € Fom[X]/< P >
ok i=0
CDZ: n—1
P2 = (P, sPn) | |P(X) = 2 ~pi mod P? € Fm[X]/< PP >
1=




Preliminaries: Polynomial Ring Arithmetic

« Multiplication notations

» For vectors u,u’ € IFgm, polynomial P; € F m[X]/< P >, and map ®;, we have

n

uu’ mod P = &7 Hd; ()P, (u)) = X2 ¥i_gujui(X;) 'mod P

Vector-vector multiplication

n

——1 .
Piu’ mod P = &7 (P, @, (u")) = X7_ ) Pyu;(X;)'mod P

Polynomial-vector multiplication



Preliminaries: Polynomial Ring Arithmetic

« Conversion maps between two moduli
» For the conversion, we use the two maps W and Q asxc

1
P, = zb p; mod P € F m|X]
i=0

n

A(P,) = Zn:

p; mod P € F m[X]/< P >

§)

nqj,

=—1
zb p; mod P € F m|X]
i=0

n—1
P, = 2 p; mod P € F m|[X]/< PP >
1=0




Preliminaries: Polynomial Ring Arithmetic

« Equvalent circulent matrix conversion
» n-tuple vector v(or polynomial v(X)) can be converted into the circulant matrix
» The vector from vector-vector multiplication uu’'mod P is equal to that from
matrix-vector multiplication of uJ(u") or7(u)u’ (Ideal condition)

J '
V=,V 00) [ I(v) = Xvmod P

g1 X" 1lvymodP




Preliminaries: Polynomial Ring Arithmetic

« Some useful properties: Proposition 1
> It X deg(u;(X1)) < n for integer set I, we have

l_Lemui(Xl) mod P = () (l_Le[z] R Y (ui(Xl)) mod Pb>

* Proof sketch) From Hie[l] g (ui(Xl)) mod P?, the polynomial reduction is
not occurred by PP if ¥;cr,1deg(u;(X1)) < n. Therefore, it returns the same results




Preliminaries: Hamming metric and codes

Hamming weight of vector wty(v) or |v|: Defined as the number of nonzero
elements for n-tuple vector v = (v, vy, ...,v,,) € (Iqu)n

(n, k) F,m —linear codes: F,m —linear code C is defined by subset with g*-
cardinality consisting of n-tuple vectors ¢; in C = {cl,cz, ...,ch} C (Iqu)"

Minimum Hamming weight wt,(C) of F,m —linear code C: For a codeword c;,

wty (C) = min wt(c;)
c;cC

(n, k,d) F,m —linear codes: (n,k,d) F,m —linear code C is defined by (n, k)
F,m —linear codes with minimum Hamming weight wy(C) = d



Preliminaries: Hamming metric and codes

« From a codeword c in (n,k,d) F,m —linear code C, additive error vector e with
llel| < {%‘ can be corrected from a received word r = ¢ + e by sphere packing

|e| I l I I la Definition 2.21 The minimum Hamming distance (or minimum distance) d;, of a code
C is the minimum of the distances between all pairs of codewords. O

t: Error correction capability
d:Error detection capability
2t +d+ 1< dpyin




Preliminaries: Rank metric representation

* From an n-length vector v = (v, v,,..,1,) € (Iqu)n
> Let B be an element of m-degree primitive polynomial satisfying

m-1 |
v = 2 vii B’
J=0

» Then, the vector v can be converted into the matrix M(v) € (Iqu)n

> Then, the rank weight of vector wtg(v) or ||v|| is defined as a rank of the
matrix M(v)

M(-) V11 V21 e Ungo
V = (Ul, (%X ...,Un) > M(V) —




Preliminaries: Rank metric codes

* Minimum rank weight wt;(C) of F,m —linear code C: For a codeword ;,

wr(C) = minwt(c;)
c;cC

* (n, k) F,m —linear codes with rank weight d: (n,k) F,m —linear code C is defined
by (n, k) F,m —linear codes with minimum rank weight w,.(C) = d

« From a codeword c in (n,k) F,m —linear code C with rank weight d, additive
error vector e with ||e|| < {%‘ can be corrected from a received word r=c+e
by sphere packing lemma



Goodness of rank weight code

« Correcting low-rank error can be advantageous for correcting the correlated

multiple errors

From Hamming weight metric
Error vector e and M(e) le| = column length
1 ) 0 Multi-error
correctable codes
1 0 0 should be used
1 0 0 \ From rank weight metric
« Suppose that a codeword has a ||e|| =1
2-D placement in Single-error correctable
* Column-wise errors are occurred codes are sufficient




Hamming metric and rank metric codes

Properties
« Product (sub)space and Hamming/rank weight

Code design
» Hamming metric codes: maximum distance separable (MDS) codes, moderate-density
parity check (MDPC) code, low-density parity-check (LDPC) codes
» Rank metric codes: Maximum rank distance (MRD) codes, Low-rank parity-check (LRPC)
codes

Hardness problem
» Hamming metric codes: (Hamming) Syndrome decoding problem
» Rank metric codes: Rank syndrome decoding (RSD) problem

Cryptosystem
» Hamming metric codes: HQC(MDS code based), BIKE (LDPC code based)
> Rank metric codes: RQC(MRD code based), ROLLO (LRPC code based)



Product subspace and rank weight

* For the properties of Hamming metric code
» Fym —subspace(~F,m — linear code)
» Product subspace
< Generally, For two F,m —spaces(or linear codes) C; and C,, product space C;C, = C; N C, can be
generated
< For the F,m —subspace C;, C, with Hamming weight r and d, Hamming weight of C;C; is lower than
< rd (If Hamming weight r and d is low, most probably, the weight of C;, C, equal to rd)

* For the properties of rank metric code
> F,-Subspace

/7

% Support(generating) set supp(v) =< vy, ..., v, > for each element of v = (vy,v,, ...,v,) € (Iqu)n
» Product subspace
% If rank weights weight r and d is low, most probably, the weight of EF equal to rd

< For two F, —subspaces E = supp(u) =< uy, ..., u, > and F = supp(v) =< vy, ..., v, >, product space
can be represented as EF = supp(uv mod P)



Hamming metric and rank metric

« For Hamming metric MDS codes: !
» MDS codes achieves the Singleton bound: d <n—-k +1 &
» Reed-Solomon codes is MDS codes with PCM A with A= | o
Vandermonde matrix :
» RS codes are used for PQC scheme HQC Ly
(NIST Candidate, PKE/KEMs) L%
* For rank metric MRD codes (g7
» MRD codes achieves the Singleton bound: d < %(n —k)+1 g;l
1

» Gabidulin code is MRD codes with generator matrix G G=
> Gabidulin codes are used for RQC(NIST Candidate, PKE/KEMs)

(NIST 2 Round Submission, PKE/KEMSs) qu




Hamming metric and rank metric codes

* For Hamming metric MDPC/LDPC codes(in BIKE)

» For codelength 2n c € ¢, LDPC codes is binary linear codes with n x 2n-sized PCM H using two
circulant matrices H; and H, of

h, !
Xh; mod (X" -1
H = (HllHZ)l Hl — 1 ( ) ’
X" 1h; mod(X™ - 1)
h, '

Xh, mod(X™ —1)
HZ —

X" 1h, mod(X™ — 1)

where n-tuple random two vectors h; and h, satisfying |h;| < d and |h,| <d



Hamming metric and rank metric codes

* For rank metric ideal LRPC codes(in ROLLO)
»  For codelength 2n c € C, Ideal LRPC codes is F,m —linear codes with n x 2n-sized PCM H

< T y T
Xxmod P Xy mod P
H — (H1|H2), Hl — 'y ’HZ = [N
X" 1xmod P X" 1y modP

where F,-subspace F with rank weight d in F,m, n-degree polynomial P € F,[X], and n-tuple

random two vectors xand y in F
.

<1 x~1y
> Note that we have H{! = Xx“mod P | H{'H, = Xx~"ymod P

X" 1x1mod P X" 1x 1y mod P



Hamming metric and rank metric codes

« Hamming metric codes: Syndrome decoding problem (SD)
» For a syndrome vector s, it is hard to find a vector e lower than the Hamming weight w,
on the condition that He! =sT
» Known as NP-Complete

« Rank metric codes: Rank syndrome decoding problem (RSD)
» For a syndrome vector s, it is hard to find a vector e lower than the rank weight w, on the
condition that He! =sT
» If RSD is in ZPP, the problem is NP(asymptotically, NP) [3]

« Rank metric codes: Ideal-Rank syndrome decoding problem (I-RSD)
» For a vector h and syndrome vector s, it is hard to find a vector e = (eq, e;) lower than the
rank weight w satisfying the condition that e; + e;hmod P = s.
[3] P. Gaborit and G. Zemor, On the Hardness of the Decoding and the Minimum Distance Problems for Rank Codes," IEEE Trans. Inf. Theo., vol. 62, No. 12, pp.

7245-7252;2016



Indistinguishability

Indistinguishability
> It is difficult to distinguish or recover the structural characteristics of the codeword
from the specific word generated by message and parity combination

« For Hamming metric codes: Indistinguishability of MDPC/LDPC codes
» For the circulant matrix H; and Hywith small Hamming row weight d, it is hard to
distinguish between the uniformly sampled random matrix R and H{1H,.

* For rank metric codes: Indistinguishability of ideal LRPC codes
» For vectors x and y with small rank weight d, it is hard to distinguish between the
uniformly sampled random vector h and x~'y mod P.
> Application for the cryptosystem (ROLLO): x 'y mod P can be used for PK in a
cryptosystem with a public key (PK) x~1y mod P.



Existing ROLLO Schemes

 Alice and Bob wants to have a shared key.

For this,

> Key generation: Alice generates public key
(PK) and secret key (SK)

» Encapsulation: Bob generate ciphertext (CT)
to encapsulate SS using PK

> Decapsulation: Alice decapsulate CT to obtain

SS using SK

1. Key generation
> Generate Low-rank F,-subspace F € (Iqu)n

with rank weight d
» Select a random vector x,y € F
» Generate PK and SK as
< PK: h=x"1y mod P
. SK: <xy>

Alice F,-subspace F with Low-rank
weight d
Parity check on
vector |
! / v
X y

Secret key (SK) x‘ly 0dP = h

Public key (PK)

NS

To public, including Bob



Existing ROLLO Schemes i emetien

2. Encapsulation /Z\n
> Generate Low-rank F,-subspace E € / | \ Bob
(Fym)" with rank weight r | : : \
» Generate n —tuple two error PK el_ €2

— v—1
vectore;, e, €EE h=x""y y> - =
],

» Transmit ¢ = e; + he, mod P c =eq + he, Hash(E)
> Generate Hash(E) for shared secret (SS)

CTc SS Hash(E)
3. Decapsulation SK x Alice
» From SK x derive xc mod P = xeq + v v
dp XC = Xeq t+ye, Check correct
y€z Mo : -ness by Hash(E')
> Recover F,-subspace E in the rank
support recovery (RSR) algorithm I\/I -1
» Verify the correctness by comparing Rank support Recovered
recovered has E' with received SS Hash(E). recovery algorithm F,-subspace E’
> With Hash(E')=Hash(E)




RSR decoding algorithm

« Sketch of the RSR algorithm

> Using F,-subspace F and SK x,y, recover the F,-subspace E from xe; +ye,; mod P

» Main contribution
% 1. Calculate xc = xe; + ye,

< 2. Derive f;1xc from linearly independent vectors in F =< f,,f,, ..., f; >
“ 3. Recover the support From E' = ;¢ fi 'xc

> Required complexity: O(r¢d3*m)
> DFR (decryption failure rate): Lower than g=(r4-m)

« Remarks
» For lower values r,d, a lower decoding complexity can be expected



Rank Syndrome Decoding (RSD) algorithm

« Rank syndrome decoding (RSD algorithm)

» By recovering E or F, generic or structural attacks was proposed, which determines the
security level of the cryptosystem
% Generic attacks: In order to recover F, derive all the combination with rank weight d

(required complexity ~Q(q%)) first. The best strategy needs the complexity of

0, (n3m3qd[%]_m_n)
% Structural attacks: In order to recover F, derive all the combination with rank weight r
(required complexity ~Q(q")), first. The best strategy needs the complexity of

« Remarks

» For lower values r,d, we can obtain a lower security level, which lowers the security of the
cryptosystem




New design criteria for the proposed KEM

* Thus, the public key is designed from the ideal LRC codes with the small

codelength, small rank weights r and d, and the following conditions
> 1st condition: All the operation is based on the polynomial ring
» 2nd condition: a low-rank codeword is not shown in the attacker
» 3rd condition: Properties of codeword are not specified in the ciphertext

Random vectors smaller z = Px 1y mod P
COdeIength and Iow rank i,,E'::::::::::::::::::::::::::i"i
weights r " ¥

x,y,h=x"1y mod P

n
—_— ij <x_1y mod P'E)

Py: Random
polynomial Py €
F,m[X]/< PP >

S| S

Outer polynomial P,

Outer :> Inner Py = (Po¥ (2(Xy)) + PyP mod P?) € F,m[X]/< PP >

codes codec



Layered ROLLO-I: Procedures

Key generation

>

Generate two random vectors x and
y from the low-rank F,-subspace F €

(F,m)? with rank weight d
Generate b-degree and n-degree

random polynomials P; and P,.
Generate z and Py as

o/

% z=Px 1y modP,

1st cond.——

* Py = (Po¥ (2(X1)) + PyP mod P?) 2nd cond._
Finally, construct SK and PK as
* PK: Py, Pp = W(P))Py mod P" 3rd cond.

(NOTE: We use an additional key size by

P,, which amounts to [nlo%][Byte])
s SK: X,V Po,PI

n Tl
SK b 1
A PO
X
b
y P,
Low-rank Random
polynomial F polynomials
— 7 = PIx_ly mod P
Py = (Po¥ (2(X1)) + PyP )mod P?
Pp =LIJ(PI)PO mOde
Py, Pp PK —
To public,

including Bob




Layered ROLLO-I: Procedures on e

2. Encapsulation
> Generate Low-rank F,-subspace E €

(F,m)? with rank weight r
» Generate %—tuple two error

vectore,, e, €EE
» Obtain CT polynomial P, as
P; = (PpPg, + PyPg,) mod PP

» Obtain k; = Hash(E) to have a
shared secret (SS)

Shared
key

n
b n
A )
€1 P,
eZ PP
Low-rank :
polynomial F Public key
\/
PE,l — Lp(el(X)); PE,Z — LP(BZ(X)) mod Pb
P; = PpPg 1 + PyPg, od ph
k, = Hash(E)

P, CT
k., SS To public,
including Alice




Layered ROLLO-I: Procedures

3. Decapsulation
» Obtain the codeword xc” = xe; +

ye,mod P
from P; by
% P, = Py P, mod P’
o Cc = ;! (P,_1 (Q(PC))) mod P

R/

< xc mod P = xe; + ye, mod P

» From xc""mod P, recover the support E’

by the RSR algorithm

Derive shared key k, = Hash(E'") and if
k; = Kk,, use the support E' as a shared
key

Alice

From Bob

vCT P,

Sk N\

P, = Py1P,

mod PP

-~

Check

k1:k2

17/

C =

o1t (P (ar))

mod P

—

shared key
k, = Hash(E")

- =

xc''mod P =
xe; + ye,mod p ™ModP

=

Recovered
Support E’

- =

Recover the support E’

by the RSR

algorithm

X
y

-S| S

Shared key




Layered ROLLO-I: Procedures

1 b
* In the decapsulation phase Qo Fc mod P7}h) mod P

= Q{(¥(Pr)¥(e1(X1))) mod P})+ (1)
QY (Prx 1ty (X)) ¥ (ea(X d P+ (2
Q{¥(PyP)¥(ex(X1)) mod P°}) mod P. (3)
I _ p—1 b L
PC - PO PC mod P For the first summand of (8), note that deg(P;)+deg(e;) < n.
v (1) According to Proposition 1, we have fl> PIel mOd P
¢ = QU{(¥(P;)P(ei(X1)) mod Pb}} mod P = Pre; mod P,
ot (i (ae)) " R ik .
2 x ! 1))VY(e : mod P°) moc ! 2
T (2) sz(q;f(Pf_l ¥(X1))W(ea( X)) 1 P?) 1P mod P
= Pix”"ye2 mod P.
XC”mOd b= Also, the third d of (8) b 0 by th Q 0 mOd P
xe, + ye,mod P mod P (3) — “ - P
In summary, we have
Yl |7 (P/'Q(PL)) mod P

= Pf_lpiel(Xl) + -Pj_lpfx_lyEQ(Xl) mod P
=e(X1) + X_lyez(Xl) mod P.




Computational Complexity Analysis

Compared to ROLLO-I, there are several advantages and drawbacks of the

proposed approach regarding its computational complexity
» Advantage: Key generation and decapsulation
“ Parameters r or d(rank weight): For RSR algorithm in decapsulation, the complexity
from lower r or d is decreased by the quadratic or cubic level ( with O(r?d3m) )
% Parameter b: It did not change the complexity RSR algorithm. However, small
codelength is better for the key generation and lower DFR

» Drawback: Key generation, encapsulation, and decapsulation
> For the overall procedure, additional operation regarding mod P? is necessary, which
increase the complexity
» Especially, the complexity for computing inverse of P; and P, is high
< Larger b increase the complexity for invese of P;, P, and mod P? operation and
thus, lower b is better



Security Analysis

Indistinguishability: In the existing PK h = x~1y, new public key P, multiplying two random
polynomial P; and P, do not change the property

Possible Attack Scenarios: Firstly, we should check some attack scenarios by the additional
PK information Pp
> Direct attack: Using the equation P; 1P, mod PP
< (P{P51P.mod P?)mod P returns the different polynomials from
P (PytP; mod P?) mod P
“* By Deg(P,‘1)~% and Deg(P,1)~n, reduction for Proposition 1 is not applied

» Polynomial attack: Using the information on Pp
* An attack cannot guess P, and P, from the degree or coffeicients on P, (indistinguishability)



Security Analysis

« Existing Attacks on Generalized

concatenated (GC) codes [3]

» Motivation: The proposed KEM can be
considered as an encoding process of
generalized concatenated (GC) codes

» Then, the attack can be analyzed using
the existing Sendrier’s attack

% Sendrier’s attack consists of two
phases

% 15t phase: From the multiple
observation of codewords, firstly find a
structure of the inner codes

< 2" phase: Based on this, recover the
outer codes

e, e, Proposed cryptosystem

. CT

y

— Quter encoder Inner encoder

Cyclic codes with

Ideal LRPC codes generator P; and P,

e, e, Attackers’ approach

Inner decoder f— CT

A

«<— Quter decoder

Decode Extract inner
inner blocks blocks that

using Part 1 did not fail

— R

_—— _———
I — S E Randomly choose T
cte out of these n, + ny
. . : : . inner blocks. Goal:
Find T correct ones.

Bat — [ —

XX x| —— _

EEES —

Legend: x Single error in some inner block.

Correctly decoded inner block (n, many)

AR

RRRRRRRRRR Inner block in which decoding failed (ny many)

Wrongly decoded inner block (n,, many)

[3] S Puchinger, S. Muelich, K. Ishak, and M. Bossert, "Code-based cryptosystems using generalized
concatenated codes," #textit{App. of Comp. Alg.}, Kalamata:Greece, Jul. 20-23, 2015.



Security Analysis

« For an attack scenario in the proposed KEM
> 15t Phase

/

% Attacker do not collect a multiple codeword because generator polynomials P; and P, of
the inner code are changed in each CT

/

% Instead, attack can guess P, or P; and if the exact polynomial is found, they can proceed to
the 2" phase

* If the attack guess P;(easier than guessing Py), the required complexity is 0( g®=Y™) by
guessing each coefficients of the codes
< For each guessing, the attacker should proceed to the 2" phase because attacker cannot

convince the exact value only from guessed Py
» 2" Phase

/7

% In each case, attacker use the existing attacks for the ideal LRPC codes.
» Total complexity

< Generic attack: Complexity amounts to O (q(b—l)m X (1})2 m3q2ie[1,b](di)3[3]—m—5>

T[m(%ﬁ_l)}—m
. nm\3 2n
% Structural attack: Complexity amounts to 0 \ g(®=bm x (T) gl %



Suggested Parameters

« Suggested parameter for the proposed KEM
» D, decareaes, size of PK increase, Other parameters are maintained
7]& NIST A% ROLLO- s+e}v] g

57171
Ol AE A q n m d b S¢ | Ss | Do | DFR 5]
ROLLO-1-128 2 83 67 8 1 |207.7|155.3| 20.7 | 9727 | 696
ROLLO-1-192 2 97 79 8 1 |279.0 1787 | 21.3 | 9733 | 958
ROLLO-1-256 2 113 | 97 1 |383.6]266.8| 22.4 | 9732 | 1371
A WY o 7]¥kek KEM wHehu] g
=271 7]
oy q n m d b Sa | S | Do | DER 03_7]
Proposed-128 2 74 67 2 138.1 | 130.1 | 13.24 | 9731 | 1240
Proposed-192 2 86 79 3 199.2 | 225.2 | 16.05 | 9735 | 1857
Proposed-256 2 106 97 3 287.0 | 275.0 | 17.00 | 973 | 2571




Implementation enwronments

« RBC(Rank-based cryptography) library

» RBC is an open-source library for rank-
metric code-based PQC in 2021 which
includes operations MRD and LRPC
codes

» Consists Python Wrapper, mainly C
language with AVX-2 instruction for
Intel CPU

« Simulation environment
» The 12th Gen. Intel® Core™ i9-12900K
multi-core CPU with AVX-2 support
» 32GB DDR5 4.800MHz memory
» Ubuntu Linux 20.04 LTS
» Measured as an worst processing cycle in
the 100 iteration

ROLLO-1-128

carisis@car -ECTest:~/Downloads/BII LRPC Init$ ./vinsrouiLiui i1zo
Keygen: 3810534 CPU cycles

Encaps: 389839 CPU cycles

Decaps: 5887988 CPU cycles

secretl: 2885e255fbc20c57baf8fbd2386cd7b6694798fb6cfabec28f5¢ce4988a2e2451blclfer
649e8d2abcaob444d8fe828dcBfob6casn53ae2d2bale2351bcbbenss
secret2: 2885e2551bc20c57bal81bd2386cd7b66947981b6clfabec2815ce4988a2e2451blclfet
649e8d2abcabb444d8fe828dc8f9b6ca9853ae2d2bale2351bcbbed94

Prop-128

carisis@carisis-ECTest:-/Downloads/BII LRPC Init$ ./bin/biix 128
q 4

Keygen: 3459638 CPU cycles
Encaps: 1817531 CPU cycles
Decaps: 3288856 CPU cycles

secretl: 25e2734b9d3fdafeecdcdblllsfeee630133Tf4b3a60335360TTI6lacdB55ec23batarla
lab7631655e5497b0ald42ce5T2873b0c6b990b9be6cac3i4de5b2034a815T63aT22b3 299856304727
COd564cfHbZcl44c9cBEOALIfTobSaciedBaedbEd4b4 71839087 e64d98915869754cb6bbach f11d
bdeS425d2651at?idlaazvasy

secret: 23e2734b9d3fdafeeodcdblllsfocea3
1ab763f65565497bBalszce5F2873b0c6bo%ebobel  LANgUages
CHd564cT6b2c144c9cB630903 1 TobEace98acdbid:

——————————
bde542502651af77d18627257 -

® C597% ® Python 30.8%
® Makefile 3.7% ® CMake 3.1%

® C++23% ® TeX 0.4%



Code implementation method

Essential library: python3, python-yaml, cmake, make, gcc, openssl

carisis@carisis-ECTest:~/Downloads/BII_LRPC_Init_2$ sudo apt install python3 pyt
hon-yaml cmake make gcc openssl]j

Implementation method: Mainly use the functions in RBC library, and adds some functions

and parameters for the additional functionality
New code builds the performance results and KAT for proposed KEM and existing ROLLO-I

together, thus their performances can be directly compared.

» Build command: python rbc-lib.py
> Execution command: ./bin/biix XXX
» KAT(Known answer test) generation command: ./bin/kat_biix_XXX

carisis@carisis-ECTest:~/Downloads/BII_LRPC_Init_2$ python rbc-1lib.py

### Parsing configuration file
[
‘

### Removing previous build

### Preprocessing library
Templating core files
Preprocessing core67
Preprocessing core79
Preprocessing core97



Code performance analysis

encapsulation, and decapsulation

» The proposed KEM have processing cycle reduction by 40-70% for the same security

level compared to the existing ROLLO-I

« Performance measure: The number of CPU processing cycle for key generation,

Instances Keygen. Encap. Decap. Total
ROLLO-I-128 | 6,019,622 | 574,711 8,287,089 14,881,422
ROLLO-I-192 | 4,388,835 | 577,348 7,955,763 12,922,035
ROLLO-I-256 | 8,361,499 | 672,956 | 10,878,644 | 19,903,099
Proposed-128 | 2,609,907 | 661,423 5,570,494 8,841,824
Proposed-192 | 2,921,813 | 755,759 5,253,698 8,931,270
Proposed-256 | 3,757,592 | 918,300 | 10,424,395 | 15,100,287




Conclusion

 |n this study, research is conducted to improve rank-based codes and ROLLO-,
which have the advantage of small key size among quantum resistant
cryptography, through a new block-based hierarchical structure

» The proposed method reduces the rank weight of the ideal LRPC code used in ROLLO-I to a
small size, and introduces a hierarchical structure for compensating the decrease in
security level

» Compared to the existing ROLLO-I the proposed parameters utilize an increased public key
size, but have the advantage of faster cryptographic operation

» This can be used to solve the problem for high decoding complexity, which is one of the
major difficulties of rank-based codes and the proposed approach makes rank-based
encryption systems more competitive.



Further Information

« KPQC Hompage: https://kpqgc.or.kr/competition.html(Documents and source code for 1 round submission)
« Cryptography Arxiv: Layered ROLLO-I: Faster rank-metric code-based KEM using ideal LRPC codes (iacr.org)
« Layered-ROLLO-I Homepage: To be announced shortly

« Or contact me (carisis@jbnu.ac.kr)

] https://kpgc.or.kr/competition.html
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