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Brief History of Developing IPCC

Combinatorial cryptography by Koblitz (1994)

PMDF(Perfect Minus Dominating Function) cryptosystem by S.-T. Yoon (2001)

Revisiting Koblitz’s work and Implementation 3-regular graph version (2021)

IPCC(Improved Perfect Code Cryptosystem) (2022)

Attack on IPCC by T. Lange (2022)

Countermeasure for Lange’s attack and updating IPCC
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Comparison of IPCC and NIST PQC candidates

Features of IPCC

- Small public key but huge ciphertext

- Fast decryption (parallelizable)

- Suitable for whitebox cryptography (one-wayness) with large memory
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IPCC
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Hard problem in Graph-based Public Key Cryptosytem

A Hard problem in Graph theory

Improved Perfect Code Cryptosystem 4

difficult

(NP-hard)

PDS
(Perfect 

Dominating Set)

graph 𝐺 = 𝑉, 𝐸 Find a PDS of 𝐺.

Hard problem in RSA (Integer factoring)

Given 𝑁
difficult Find 𝑝 and 𝑞 s.t.

𝑁 = 𝑝𝑞

1

00

0

𝑝(⋅) = 𝑥𝑣1+ 𝑥𝑣2+ 𝑥𝑣4+ 𝑥𝑣6= 1

0

0

0

1

Invariant polynomial (of degree one)
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Trapdoor one-way function

RSA

Improved Perfect Code Cryptosystem 5

Message
𝑀

Ciphertext
𝐶 = 𝑀𝑒mod 𝑁

easy

hard

easy with private key 𝑑

IPCC

Message
𝑀

easy

hard

Ciphertext
𝐶 = 𝑓(𝑀)

public key: 𝐺 = 𝑉, 𝐸 private key: PDS of 𝐺

𝑀 = 𝑚1 + 𝑚2 +⋯+𝑚𝑛

𝑚1𝑝11 ⋅ 𝑝12 ⋅ + 𝑚2𝑝21 ⋅ 𝑝22 ⋅ + ⋯+𝑚𝑛𝑝𝑛1 ⋅ 𝑝𝑛2 ⋅

Reduction

𝐶 = 𝑓(𝑀)

easy with private key PDS
by evaluating 𝑓(𝑀)
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Cryptanalysis and Countermeasure

Cryptanalysis of IPCC (Lange)

- IPCC exposes sub-messages 𝑚𝑖

caused by insufficient mixing (sparse polynomial of low degree).

- Lange’s attack is more efficient than plaintext recovery attack (dedicated attack).

Analysis and Our Countermeasures

- We need new strategy to hide sub-messages.

- Invariant polynomials of higher degree solve the problem.

(We can construct an algorithm for selecting polynomials on the fly)

- And more ideas we can still try … 
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𝑚1𝑝11 ⋅ 𝑝12 ⋅ + 𝑚2𝑝21 ⋅ 𝑝22 ⋅ + ⋯+𝑚𝑛𝑝𝑛1 ⋅ 𝑝𝑛2 ⋅

It may take longer than expected but IPCC will be antifragile.
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1. Introduction

Purpose of research about Perfect Code Cryptosystems

In 1992, Koblitz and Fellows proposed 

a graph-based public key cryptosystem

This cryptosystem achieves one-wayness by leveraging 

the complexity of finding a certain subgraphs in a graph, 

and it is predicted to be an NP-hard problem 

that has potential applications in PQC

Despite its potential as a post-quantum cryptosystem, 

the cryptosystem has not received much attention 

due to its slow encryption speed and high memory usage, 

which increase as the security level is raised

Improved Perfect Code Cryptosystem 8

M. Fellows, and N. Koblitz, “Combinatorially based cryptography for children (and adults),” Congressus Numerantium, 9-9, 1994.
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1. Introduction

Purpose of research about Perfect Code Cryptosystems

The improved cryptosystem is expected to exhibit different characteristics 

than the algorithms proposed as NIST PQC standardization candidates, 

and it may be more effective at providing one-wayness or 

whitebox cryptographic encoding in a memory-rich environment

Improved Perfect Code Cryptosystem 9

Characteristics of NIST PQC standardization candidate algorithms

D. Moody, “The 2nd round of the NIST PQC standardization process”, In the second PQC standardization Conference, 2019.

expected position 
of IPCC

running time is short, but 
ciphertext size is very large
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1. Introduction

Notation

3-regular graph
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𝑉 : set of vertices

𝐸 : set of edges, 𝐸 ⊆ 𝑉 × 𝑉

𝐺=(𝑉, 𝐸) : graph generated by 𝑉 and 𝐸

𝑁[𝑣] : set of neighboring vertices of 𝑣, including itself

𝑃∗ 𝑉 : power set of a set 𝑉 excluding the empty, 𝑃 𝑉 \{∅}

If a graph 𝐺 = 𝑉, 𝐸 satisfies the following,

it is called a 3-regular graph

∀𝑣 ∈ 𝑉, 𝑁 𝑣 − 1 = 3

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6

example of 3-regular graph
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1. Introduction

PDS (Perfect Dominating Set)
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For every vertex 𝑣 in the graph 𝐺 = 𝑉, 𝐸 ,
if 𝑁 𝑣 contains exactly one of the elements of vertex set 𝐴 ⊆ 𝑉,

then 𝐴 is called the PDS of 𝐺.

∃𝐴 ⊂ 𝑉 s. t. ∀𝑣 ∈ 𝑉, 𝑁 𝑣 ∩ 𝐴 = 1

PDS

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8} 𝐴 = {𝑣1, 𝑣8}

𝑁 𝑣1 = {𝑣1, 𝑣2, 𝑣4, 𝑣6} 𝑁 𝑣2 = {𝑣1, 𝑣2, 𝑣3, 𝑣7}

𝑁 𝑣3 = {𝑣2, 𝑣3, 𝑣4, 𝑣8} 𝑁 𝑣4 = {𝑣1, 𝑣3, 𝑣4, 𝑣5}

𝑁 𝑣5 = {𝑣4, 𝑣5, 𝑣6, 𝑣8} 𝑁 𝑣6 = {𝑣1, 𝑣2, 𝑣4, 𝑣6}

𝑁 𝑣7 = {𝑣2, 𝑣6, 𝑣7, 𝑣8} 𝑁 𝑣8 = {𝑣3, 𝑣5, 𝑣7, 𝑣8}

Every elements 𝑣 of 𝐴 belong 
to the set 𝑁 𝑣 only once
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PDF (Perfect Dominating Function)

Let 𝑓 ∶ 𝑉 → 0, 1 is a function
that maps from vertex set V to set 0, 1 for graph 𝐺 = 𝑉, 𝐸 .

𝑓 is called a PDF if it is satisfying the following condition

∀𝑣 ∈ 𝑉, σ𝑢∈𝑁 𝑣 𝑓 𝑣 = 1

1. Introduction

Improved Perfect Code Cryptosystem 12

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6

𝑣8𝑣7

𝑓 𝑣 = 𝑥𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ 𝐴
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

10

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8} 𝐴 = {𝑣1, 𝑣8}

𝑥𝑣1= 1,   𝑥𝑣2= 0,   𝑥𝑣3= 0,   𝑥𝑣4= 0, 𝑥𝑣5= 0,   𝑥𝑣6= 0,   𝑥𝑣7= 0,   𝑥𝑣8= 1

σ𝑢∈𝑁 𝑣1
𝑥𝑢 = 𝑥𝑣1+ 𝑥𝑣2+ 𝑥𝑣4+ 𝑥𝑣6= 1 σ𝑢∈𝑁 𝑣2

𝑥𝑢 = 𝑥𝑣1+ 𝑥𝑣2+ 𝑥𝑣3+ 𝑥𝑣7= 1

σ𝑢∈𝑁 𝑣3
𝑥𝑢 = 𝑥𝑣2+ 𝑥𝑣6+ 𝑥𝑣4+ 𝑥𝑣8= 1 σ𝑢∈𝑁 𝑣4

𝑥𝑢 = 𝑥𝑣1+ 𝑥𝑣3+ 𝑥𝑣4+ 𝑥𝑣5= 1

σ𝑢∈𝑁 𝑣5
𝑥𝑢 = 𝑥𝑣4+ 𝑥𝑣5+ 𝑥𝑣6+ 𝑥𝑣8= 1 σ𝑢∈𝑁 𝑣6

𝑥𝑢 = 𝑥𝑣1+ 𝑥𝑣2+ 𝑥𝑣4+ 𝑥𝑣6= 1

σ𝑢∈𝑁 𝑣7
𝑥𝑢 = 𝑥𝑣2+ 𝑥𝑣6+ 𝑥𝑣7+ 𝑥𝑣8= 1 σ𝑢∈𝑁 𝑣8

𝑥𝑢 = 𝑥𝑣3+ 𝑥𝑣5+ 𝑥𝑣7+ 𝑥𝑣8= 1

assign each vertex of the PDS to 1 
and all others to 0, then 𝑓 is a PDF
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2. Perfect Code Cryptosystems

Perfect Code Cryptosystems

This cryptosystem relies on the problem of finding a PDS in the graph,

which is expected to be NP-hard

Improved Perfect Code Cryptosystem 13

public key : 3-regular graph having a PDS / secret key : PDF

1. Bob generates and publishes public key graph

2. Alice generates a polynomial ciphertext with the vertices of the graph

3. Bob gets message by substituting the variables of the vertices into a PDF value

Alice

1. Keygen

public key : 𝑝𝑘 ← 𝐺 = (𝑉, 𝐸), 𝑛 = 𝑉

secret key : PDF 𝑓 𝑣

s𝑘 ← 𝑓 𝑣 = 𝑥𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ 𝑃𝐷𝑆
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2. Encryption

ⅰ. Generate ordered pairs (I𝑆, 𝑐𝑆)

based on the message 𝑚

I = I1, I2, … , I𝑡 , I ⊆ 𝑃∗ 𝑉 , |I𝑆| ≤ 𝑘

𝑚 = σ𝑆∈I 𝑐𝑆 (𝑚𝑜𝑑 𝑝)

ⅱ. Generate polynomial ciphertext 𝑐𝑡

𝑐𝑡(𝑥𝑣1 , 𝑥𝑣2, …, 𝑥𝑣𝑛)

= σ𝑆∈I 𝑐𝑆ς𝑢∈𝑆σ𝑣∈𝑁[𝑢] 𝑥𝑣

𝑝𝑘

𝑐𝑡 3. Decryption

𝑚 = 𝑐𝑡(𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣8))

Bob
public parameter

maximum degree of polynomial 𝑘, modulo 𝑝
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2. Perfect Code Cryptosystems

Example of Perfect Code Cryptosystems

Improved Perfect Code Cryptosystem 14

1. Key generation

𝑝𝑘 : 3-regular graph having a PDS

(PDS does not appear in published graph)

𝑠𝑘 : PDF that depends on the PDS

𝑓 𝑣 = 𝑥𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ {𝑣1, 𝑣8}
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

1

0

𝑉
D1

D2

D3

D4

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5 𝑣6

𝑣7

𝑣8

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣1
𝑣8

𝑉
D1

D2

D3

D4

𝑣2 𝑣3

𝑣4

𝑣5 𝑣6

𝑣7

𝑣1
𝑉

𝑣2
𝑣3
𝑣4
𝑣5
𝑣6
𝑣7
𝑣8

→
𝑓

public parameter

maximum degree of polynomial 𝑘 = 2, modulo 𝑝 = 11 Bob

To generate a graph with PDS, 
assign a one-to-one correspondence 
between the vertices of each subset
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2. Perfect Code Cryptosystems

Example of Perfect Code Cryptosystems

Improved Perfect Code Cryptosystem 15

2. Encryption

(1) Generate ordered pairs (𝐈𝑺, 𝒄𝑺) for 𝒎 = 𝟏𝟎

Select a set I ⊆ 𝑃∗ 𝑉 ∀I𝑆 ∈ I, I𝑆 ≤ 𝑘

I = {{𝑣1}, {𝑣7}, {𝑣2, 𝑣8}}
$
𝑃∗ 𝑉

Assign an arbitrary value 𝑐 corresponding to each

element of I to satisfy the following condition

𝑚 = σI𝑆∈I
𝑐I𝑆 𝑚𝑜𝑑 𝑝

𝑐{𝑣1} = 5, 𝑐{𝑣7} = 7, 𝑐{𝑣2, 𝑣8} = 9,   σ𝑐 𝑚𝑜𝑑 11 = 10

(2) Generate polynomial ciphertext 𝒄𝒕

Delete terms if the distance of the multiplied vertex variables is 1 or 2,

Replace the higher order by the first order

𝑐𝑡 = σ𝑖=1
3 𝑐𝑖 ς𝑢∈I𝑖

σ𝑣∈𝑁[𝑢] 𝑥𝑣

= 5(𝑥𝑣1+𝑥𝑣2+𝑥𝑣4+𝑥𝑣6)+7(𝑥𝑣2+𝑥𝑣6+𝑥𝑣7+𝑥𝑣8)+9(𝑥𝑣1+𝑥𝑣2+𝑥𝑣3+𝑥𝑣7)(𝑥𝑣3+𝑥𝑣5+𝑥𝑣7+𝑥𝑣8)

= 5𝑥𝑣1+12𝑥𝑣2+5𝑥𝑣4+12𝑥𝑣6+7𝑥𝑣7+7𝑥𝑣8+9𝑥𝑣1𝑥𝑣3+9𝑥𝑣1𝑥𝑣5+9𝑥𝑣1𝑥𝑣7+9𝑥𝑣1𝑥𝑣8+9𝑥𝑣2𝑥𝑣3+9𝑥𝑣2𝑥𝑣5

+9𝑥𝑣2𝑥𝑣7+9𝑥𝑣2𝑥𝑣8+9𝑥𝑣3𝑥𝑣3+9𝑥𝑣3𝑥𝑣5+9𝑥𝑣3𝑥𝑣7+9𝑥𝑣3𝑥𝑣8+9𝑥𝑣7𝑥𝑣3+9𝑥𝑣7𝑥𝑣5+9𝑥𝑣7𝑥𝑣7+9𝑥𝑣7𝑥𝑣8

= 5𝑥𝑣1+12𝑥𝑣2+9𝑥𝑣3+5𝑥𝑣4+12𝑥𝑣6+16𝑥𝑣7+7𝑥𝑣8+9𝑥𝑣1𝑥𝑣8+9𝑥𝑣2𝑥𝑣5

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣7𝑣8 = 1 ≤ 2 → delete

A value corresponding to a vertex

with a distance of 1 or 2 from the vertex 

belonging to the PDS = 0

▶ 𝑥𝑣𝑖𝑥𝑣𝑗 = 0 𝑖𝑓 1 ≤ 𝑣𝑖𝑣𝑗 ≤ 2

1)

PDF : 𝑓 𝑣 = 𝑥𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ PDS
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

▶ 𝑥𝑣𝑖
2 = ቊ

1, 𝑖𝑓 𝑣 ∈ PDS
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2)

public parameter

maximum degree of polynomial 𝑘 = 2, modulo 𝑝 = 11Alice

PDS vertex
1

0

0
01

0

0

0

1

0

01

00

0

invariant polynomial
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1. Key generation

𝑝𝑘 : 3-regular graph having a PDS

(PDS does not appear in published graph)

𝑠𝑘 : PDF that depends on the PDS

𝑓 𝑣 = 𝑥𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ {𝑣1, 𝑣8}
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

2. Perfect Code Cryptosystems

Example of Perfect Code Cryptosystems

Improved Perfect Code Cryptosystem 16

2. Encryption

(1) Generate ordered pairs (𝐈𝑺, 𝒄𝑺) for 𝒎 = 𝟏𝟎

Select a set I ⊆ 𝑃∗ 𝑉 ∀I𝑆 ∈ I, I𝑆 ≤ 𝑘

I = {{𝑣1}, {𝑣7}, {𝑣2, 𝑣8}}
$
𝑃∗ 𝑉

Assign arbitrary value 𝑐 corresponding to each

element of I to satisfy the following condition

𝑚 = σI𝑆∈I
𝑐I𝑆 𝑚𝑜𝑑 𝑝

𝑐{𝑣1} = 5, 𝑐{𝑣7} = 7, 𝑐{𝑣2, 𝑣8} = 9

σ𝑐 = 5 + 7 + 9 𝑚𝑜𝑑 11 = 10

(2) Generate polynomial ciphertext 𝒄𝒕

𝑐𝑡 = σ𝑖=1
3 𝑐𝑖ς𝑢∈I𝑖

σ𝑣∈𝑁[𝑢] 𝑥𝑣

= 5 𝑥𝑣1 +𝑥𝑣2 +𝑥𝑣4 +𝑥𝑣6 +7(𝑥𝑣2 +𝑥𝑣6 +𝑥𝑣7 +𝑥𝑣8)

+9(𝑥𝑣1 + 𝑥𝑣2 + 𝑥𝑣3 + 𝑥𝑣7)(𝑥𝑣3 + 𝑥𝑣5 + 𝑥𝑣7 + 𝑥𝑣8)

= 5𝑥𝑣1 + 12𝑥𝑣2 + 9𝑥𝑣3 + 5𝑥𝑣4 + 12𝑥𝑣6

+16𝑥𝑣7 + 7𝑥𝑣8 + 9𝑥𝑣1𝑥𝑣8 + 9𝑥𝑣2𝑥𝑣5

𝑐𝑡

3. Decryption (PDF substitution)

𝑐𝑡(𝑓 𝑣1 , 𝑓 𝑣2 , … , 𝑓 𝑣𝑛 )

= 5𝑓 𝑣1 +12𝑓 𝑣2 +9𝑓 𝑣3 +5𝑓 𝑣4 +12𝑓 𝑣6

+16𝑓 𝑣7 +7𝑓 𝑣8 +9𝑓 𝑣1 𝑓 𝑣8 +9𝑓 𝑣2 𝑓 𝑣5

= 5+0+0+0+0+0+7+9+0mod11 = 10

𝑝𝑘

BobAlice
public parameter

maximum degree of polynomial 𝑘 = 2, modulo 𝑝 = 11
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2. Perfect Code Cryptosystems

The main attack techniques that make the legacy cryptosystem difficult to use

are key recovery attack and plaintext attack

Crucially, in order to defend against plaintext recovery attacks, 

the size of the public key and the size of the ciphertext become very large, 

resulting in very slow encryption.

Key recovery attack

Considering only key recovery attack, the legacy cryptosystem is not bad to use

Improved Perfect Code Cryptosystem 17

The goal is to find the secret key corresponding to the public key

When attempting exhaustive key search to find a PDS of the graph,

complexity is 𝑂 4𝑛0
𝑛0

𝑛 80 120 160 200

complexity 261 293 2126 2158

Complexity of key recovery attack according to graph size

If the size of PDS is 𝑛0,

the number of vertices of graph is 4𝑛0
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2. Perfect Code Cryptosystems

Plaintext recovery attack

Attack algorithm

1. Select a set I′ ⊆ 𝑃∗ 𝑉 that satisfies ∀I𝑆′ ∈ I′, I𝑆′ ≤ 𝑘, I′ = σ𝑗=1
𝑘 𝑛

𝑗

2. Set the integer 𝑐′ corresponding to each element set of I′ as an unknown value

𝑐1
′ , 𝑐2

′ , … , 𝑐|I′|
′

3. Proceed with encryption algorithm for I′

𝑐𝑡′ = σ𝑖=1
|I′|

𝑐𝑖
′ς

𝑢∈𝐼𝑖
′σ𝑣∈𝑁[𝑢] 𝑥𝑣

4. Generate a system of linear equations for the 𝑐1
′ , 𝑐2

′ , … , 𝑐|I′|
′ where 𝑐𝑡′ = 𝑐𝑡

5. Calculate the RREF(reduced row echelon form) matrix by applying the Gauss-Jordan elimination

to the generated system of linear equations

6. Let R = {r1, r2, … , r I′ , r I′ +1} be a vector obtained by adding the column vectors of the RREF matrix, 

then {r1, r2, … , r I′ , r I′ +1} = {1, 1, … , 1, 𝑚′} in ℤ𝑝

7. 𝑚′ = 𝑚

Improved Perfect Code Cryptosystem 18

The goal is not to find PDS, but to recover the plaintext associated with the ciphertext

Generate 𝑐𝑡′ containing the number of all cases when the (I𝑠, 𝑐𝑠) pair is not known,

and then apply Gauss-Jordan elimination to 𝑐𝑡′ = 𝑐𝑡 to find 𝑚′ = 𝑚

Kwon, Sujin, Ju-Sung Kang, and Yongjin Yeom. "Analysis of public-key cryptography using a 3-regular graph with a perfect dominating set.“
2021 IEEE Region 10 Symposium (TENSYMP). IEEE, pp. 1-6, 2021.
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Example of plaintext recovery attack

Public parameters 𝑘=1, 𝑝=11 and public key graph is 𝑝𝑘

Alice’s message 𝑚=5

Alice select a set I = 𝑣1 , 𝑣6 , 𝑣7

Arbitrary values 𝑐𝑆 for I are 𝑐 𝑣1 = 7, 𝑐 𝑣6 = 3, 𝑐 𝑣7 = 6

Ciphertext generated by Alice : 𝑐𝑡 = 10𝑥𝑣1 + 2𝑥𝑣2 + 7𝑥𝑣4 + 3𝑥𝑣5 + 5𝑥𝑣6 + 9𝑥𝑣7 + 6𝑥𝑣8
𝑐𝑡 = 7 𝑥𝑣1 +𝑥𝑣2 +𝑥𝑣4 +𝑥𝑣6 +3 𝑥𝑣1 +𝑥𝑣5 +𝑥𝑣6 +𝑥𝑣7 +6 𝑥𝑣2 +𝑥𝑣6 +𝑥𝑣7 +𝑥𝑣8

Attack process (eavesdropper got the 𝑝𝑘 and 𝑐𝑡)

1. Construct the set I′ to include all possible cases

I′ = 𝑣1 , 𝑣2 , 𝑣3 , 𝑣4 , 𝑣5 , 𝑣6 , 𝑣7 , 𝑣8

2. Set the unknown value for each element of I′ as 𝑐𝑗
′ 1 ≤ 𝑗 ≤ I′

𝑣1 , 𝑐1
′ , 𝑣2 , 𝑐2

′ , 𝑣3 , 𝑐3
′ , 𝑣4 , 𝑐4

′ , 𝑣5 , 𝑐5
′ , 𝑣6 , 𝑐6

′ , 𝑣7 , 𝑐7
′ , 𝑣8 , 𝑐8

′

Improved Perfect Code Cryptosystem 19

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑝𝑘

For 𝑘 = 1
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Example of plaintext recovery attack

Public parameters 𝑘=1, 𝑝=11 and public key graph is 𝑝𝑘

𝑐𝑡 = 10𝑥𝑣1 + 2𝑥𝑣2 + 7𝑥𝑣4 + 3𝑥𝑣5 + 5𝑥𝑣6 + 9𝑥𝑣7 + 6𝑥𝑣8

Attack process

3. Generate arbitrary ciphertext 𝑐𝑡′ to use in the attack

𝑐𝑡′ = 𝑐1
′ 𝑥𝑣1 + 𝑥𝑣2 + 𝑥𝑣4 + 𝑥𝑣6 + 𝑐2

′ 𝑥𝑣1 + 𝑥𝑣2 + 𝑥𝑣3 + 𝑥𝑣7 + 𝑐3
′ 𝑥𝑣2 + 𝑥𝑣3 + 𝑥𝑣4 + 𝑥𝑣8

+𝑐4
′ 𝑥𝑣1 + 𝑥𝑣3 + 𝑥𝑣4 + 𝑥𝑣5 + 𝑐5

′ 𝑥𝑣4 + 𝑥𝑣5 + 𝑥𝑣6 + 𝑥𝑣8 + 𝑐6
′ 𝑥𝑣1 + 𝑥𝑣5 + 𝑥𝑣6 + 𝑥𝑣7

+𝑐7
′ 𝑥𝑣2 + 𝑥𝑣6 + 𝑥𝑣7 + 𝑥𝑣8 + 𝑐8

′ 𝑥𝑣3 + 𝑥𝑣5 + 𝑥𝑣7 + 𝑥𝑣8

= 𝑥𝑣1 𝑐1
′ + 𝑐2

′ + 𝑐4
′ + 𝑐6

′ + 𝑥𝑣2 𝑐1
′ + 𝑐2

′ + 𝑐3
′ + 𝑐7

′ + 𝑥𝑣3 𝑐2
′ + 𝑐3

′ + 𝑐4
′ + 𝑐8

′

+𝑥𝑣4 𝑐1
′ + 𝑐3

′ + 𝑐4
′ + 𝑐5

′ + 𝑥𝑣5 𝑐4
′ + 𝑐5

′ + 𝑐6
′ + 𝑐8

′ + 𝑥𝑣6 𝑐1
′ + 𝑐5

′ + 𝑐6
′ + 𝑐7

′

+𝑥𝑣7 𝑐2
′ + 𝑐6

′ + 𝑐7
′ + 𝑐8

′ + 𝑥𝑣8 𝑐3
′ + 𝑐5

′ + 𝑐7
′ + 𝑐8

′
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𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑝𝑘

Compare the coefficients of each term of

𝒄𝒕 and 𝒄𝒕′ to form

a system of linear equations
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Example of plaintext recovery attack

Attack process

4. Calculate the RREF matrix by applying the Gauss-Jordan elimination to the 𝑐𝑡′ = 𝑐𝑡

5. The result of adding each column vector of the RREF matrix on ℤ11 is:
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𝑐1
′ 𝑐2

′ 𝑐3
′ 𝑐4

′ 𝑐5
′ 𝑐6

′ 𝑐7
′ 𝑐8

′

1 1
1 1

0 1
1 0

0 1
1 0

1 1
1 1

0 1
0 0

0 0
1 0

0 0
1 0

0 1
0 0

0 0
1 0

0 1
0 0

0 1
0 0

0 0
1 0

1 1
1 1

0 1
1 0

0 1
1 0

1 1
1 1

10
2
0
7
3
5
9
6

𝑐1
′ 𝑐2

′ 𝑐3
′ 𝑐4

′ 𝑐5
′ 𝑐6

′ 𝑐7
′ 𝑐8

′

1 1
1 1

0 1
1 0

0 1
1 0

1 1
1 1

0 1
0 0

0 0
1 0

0 0
1 0

0 1
0 0

0 0
1 0

0 1
0 0

0 1
0 0

0 0
1 0

1 1
1 1

0 1
1 0

0 1
1 0

1 1
1 1

10
2
0
7
3
5
9
6

1 0 0 0 0 0 0 -1 7
0 1 0 0 0 1 1 1 -2
0 0 1 0 0 -1 0 0 -3
0 0 0 1 0 0 -1 0 5
0 0 0 0 1 1 1 1 -2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

𝑐1
′ 𝑐2

′ 𝑐3
′ 𝑐4

′ 𝑐5
′ 𝑐6

′ 𝑐7
′ 𝑐8

′

1 1
1 1

0 1
1 0

0 1
1 0

1 1
1 1

0 1
0 0

0 0
1 0

0 0
1 0

0 1
0 0

0 0
1 0

0 1
0 0

0 1
0 0

0 0
1 0

1 1
1 1

0 1
1 0

0 1
1 0

1 1
1 1

10
2
0
7
3
5
9
6

1  1  1  1  1  1  1  1  5

1 0 0 0 0 0 0 -1 7
0 1 0 0 0 1 1 1 -2
0 0 1 0 0 -1 0 0 -3
0 0 0 1 0 0 -1 0 5
0 0 0 0 1 1 1 1 -2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

The value of each 𝑐′ is not uniquely determined,

but message 𝑚 = 5 is recoverable

Compare the coefficients of

each term of 𝒄𝒕 and 𝒄𝒕′

and form a system of linear equations

𝒙𝒗𝟏 𝟏×𝒄𝟏
′ +𝟏×𝒄𝟐

′ +𝟎×𝒄𝟑
′ +𝟏×𝒄𝟒

′ +𝟎×𝒄𝟓
′ +𝟏×𝒄𝟔

′ +𝟎×𝒄𝟕
′ +𝟎×𝒄𝟖

′ = 𝟏𝟎𝒙𝒗𝟏
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Plaintext recovery attack

Improved Perfect Code Cryptosystem 22

Generate 𝑐𝑡′ containing the number of all cases when the (I𝑠, 𝑐𝑠) pair is not known,

and then apply Gauss-Jordan elimination to 𝑐𝑡′ = 𝑐𝑡 to find 𝑚′ = 𝑚

Complexity is 𝑂 𝑡3

when 𝑡 = σ𝑖=1
𝑘 𝑛

𝑖
is the number of terms in the attacker’s arbitrary ciphertext

I′ consists of every element 𝑆 of 𝑃∗ 𝑉 such that 𝑆 ≤ 𝑘

𝑐𝑡′(𝑥𝑣1, 𝑥𝑣2, …, 𝑥𝑛) = σ 𝑆∈I′ 𝑐𝑆
′ς𝑢∈𝑆σ𝑣∈𝑁[𝑢]𝑥𝑣

Alice selects a set I in 𝑃∗ 𝑉

𝑐𝑡(𝑥𝑣1, 𝑥𝑣2, …, 𝑥𝑛)= σ 𝑆∈I 𝑐𝑆ς𝑢∈𝑆σ𝑣∈𝑁[𝑢]𝑥𝑣

𝑐𝑡′ 𝑐𝑡

𝑐1
′ 𝑐2

′ …  𝑐𝑡
′

T
h
e
 n

u
m

b
e
r 

o
f

te
rm

s
 i
n
 

’

▶ σ𝑐𝑆
′ςσ𝑥𝑣 = σ𝑐𝑆ςσ𝑥𝑣

The number of terms
required by 𝑛 and 𝑘 for the attack

The complexity of plaintext recovery attack
depends on the number of polynomial terms, 

and it depends on the security parameters n and k
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Complexity has been drastically reduced by plaintext recovery attack

However, increasing 𝑛 and 𝑘 to defend against plaintext recovery attack 

makes it difficult for users to use the cryptosystem

Improved Perfect Code Cryptosystem 23

|I|
the number of 

terms

running time

key gen encryption decryption

100 6,272 0.020ms 201ms 0.110ms

500 23,111 0.019ms 2260ms 0.536ms

1000 41,131 0.020ms 7364ms 0.993ms

performance of legacy cryptosystem (𝑘=4)

𝑛 80 120 160 200

Key recovery attack 261 293 2126 2158

Plaintext recovery attack (𝑘=4) 262 269 274 277

Complexity by graph size and attack technique

Kwon, Sujin, Ju-Sung Kang, and Yongjin Yeom. "Analysis of public-key cryptography using a 3-regular graph with a perfect dominating set.“
2021 IEEE Region 10 Symposium (TENSYMP). IEEE, pp. 1-6, 2021.
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We want to increase the security against to plaintext recovery attacks without increasing 𝑛 and 𝑘

If 𝑛 does not increase, then the security of key recovery attack does not increase

Improve the balance of security

against key recovery attack and plaintext recovery attack

Concept of direction for improve the cryptosystem

Split a graph with the number of vertices 𝑁, maximum degree 𝐾

to 𝑙 graphs with the number of vertices 𝑛𝑖, maximum degree 𝑘𝑖 (2 ≤ 𝑖 ≤ 𝑙)

Improved Perfect Code Cryptosystem 24

2 polynomials with maximum degree 𝑘
in two graphs with 𝑛 vertices

𝑓1(𝑚1)𝑚1

𝑓2 𝑚2
𝑚2

▶ final polynomial: 2𝑛 distinct vertices, maximum degree 2𝑘

𝑓1(𝑚1) × 𝑓2 𝑚2

Ex

1 polynomial with maximum degree 2𝑘
in a graph with 2𝑛 vertices

𝑓(𝑚)𝑚

It is not necessary to divide the graph 

into multiple graphs of the same size
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Concept of direction for improve the cryptosystem

If attacker cannot separate the polynomial into

smaller ones with lower degree generated by 2 or more graphs,

although the complexity of key recovery attack is not changed for each graphs,

the complexity of the plaintext recovery attack for ciphertext

follows the amount of operation required to generate a polynomial 

with maximum degree 𝐾 made by a graph consisted of 𝑁 vertices

Improved Perfect Code Cryptosystem 25

Complexity of plaintext recovery attack when 𝑛=100, 𝑘=2

one graph : 236 two graph : 277

for key recovery attack when 𝑛=100 : 277 Similar security level against two attacks

𝑓1(𝑚1)𝑚1

𝑓2 𝑚2
𝑚2 ▶ 2𝑛 distinct vertices

maximum degree 2𝑘

𝑓1(𝑚1) × 𝑓2 𝑚2𝑓(𝑚)𝑚

▶ 2𝑛 distinct vertices

maximum degree 2𝑘
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1st round IPCC ImprovedPerfect Code Cryptosystems Algorithm
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1. Key gen

Public key : 2 or more small graphs

𝑝𝑘 ← 𝒢 = 𝐺1, 𝐺2, …

Secret key : PDF using PDS of each graph

(as same as the legacy cryptosystem)

𝑠𝑘 ← 𝑃𝐷𝐹 𝑣 = 𝑥𝑣

= ቊ
1, 𝑖𝑓 𝑣 ∈ 𝑃𝐷𝑆𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑝𝑘

𝑐𝑡

3. Decryption

PDF substitution

(as same as the legacy cryptosystem)

m ← 𝑐𝑡(𝑃𝐷𝐹(𝑣1), 𝑃𝐷𝐹 𝑣2 , … )

Select 𝐹 in the family of multivariate mixing functions ℱ𝑘 with maximum degree 𝑘

Generate low-degree polynomials 
with multiple graphs

public parameter

maximum degree of polynomial 𝑘, modulo 𝑝 BobAlice

2. Encryption

(1) Select 𝐹 to combine polynomials such that

the maximum order is 𝑘

𝐹𝒢
𝑘←

$
ℱ𝑘

(2) For 𝐹, distribute the message 𝑚

to satisfy the following condition

𝑚 = 𝐹(𝑚1, 𝑚2, … )

(3) For each 𝑚𝑖 , generate a polynomial 𝑓𝐺𝑖
𝑘𝑖 𝑚𝑖

with maximum degree 𝑘𝑖 on 𝐺𝑖

using legacy algorithm

(4) Return 𝑐𝑡 by combining the polynomial 𝑓𝑖

according to the form of 𝐹

𝑐𝑡 ← 𝐹𝒢
𝑘 𝑥𝑣1 , 𝑥𝑣2 , … = 𝐹(𝑓1(𝑚1), 𝑓2(𝑚2), … )
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Example of 1st round IPCC Algorithm
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1. Key gen

𝑝𝑘 : generate 2 or more graphs

𝑠𝑘 : generate PDF

as same as the legacy cryptosystem

𝑃𝐷𝐹 𝑣 = 𝑥𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ {𝑣1, 𝑣8, 𝑣18, 𝑣19, 𝑣20}
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑝𝑘

public parameter

maximum degree of polynomial 𝑘=2, modulo 𝑝 = 11 Bob
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pk

2. Encryption 𝒎=4

(1) Select 𝐹 = 𝑓1𝑓2 + 𝑓3𝑓4, each polynomial 𝑓𝑖 of degree 1

𝐹𝒢
2←

$
ℱ2 = {𝑓1𝑓2, 𝑓1𝑓2+𝑓3, …}

(2) Distribute message 𝑚 to 𝑚1, 𝑚2, 𝑚3, 𝑚4 for 𝐹

𝑚1 = 3, 𝑚2 = 4, 𝑚3 = 7, 𝑚4 = 2

𝑚 = 𝐹 𝑚1, 𝑚2, 𝑚3, 𝑚4 = 𝑚1𝑚2 +𝑚3𝑚4 = 4 𝑚𝑜𝑑 11

𝑓3(𝐺1,𝑚3)

𝑚3 = 7 , I = 𝑣8 , 𝑐{𝑣8} = 7

𝑓3 = 𝑐{𝑣8}ς𝑢∈𝑁[𝑣8]
𝑥𝑢= 7(𝑥𝑣3 +𝑥𝑣5 +𝑥𝑣7 +𝑥𝑣8)

𝑓4(𝐺2,𝑚4)

𝑚4 = 2 , I = 𝑣11 , 𝑐{𝑣11} = 2

𝑓4 = 𝑐{𝑣11}ς𝑢∈𝑁[𝑣11]
𝑥𝑢= 2(𝑥𝑣10 +𝑥𝑣11 +𝑥𝑣12 +𝑥𝑣19)

𝑓1(𝐺1,𝑚1)

𝑚1 = 3 , I = 𝑣2 , 𝑐{𝑣2} = 3

𝑓1 = 𝑐{𝑣2}ς𝑢∈𝑁[𝑣2]
𝑥𝑢= 3(𝑥𝑣1 +𝑥𝑣2 +𝑥𝑣3 +𝑥𝑣7)

𝑓2(𝐺2, 𝑚2)

𝑚2 = 4 , I = 𝑣18 , 𝑐{𝑣18} = 4

𝑓2 = 𝑐{𝑣18}ς𝑢∈𝑁[𝑣18]
𝑥𝑢= 4(𝑥𝑣9 +𝑥𝑣10 +𝑥𝑣17 +𝑥𝑣18)

Alice
public parameter

maximum degree of polynomial 𝑘=2, modulo 𝑝 = 11

(4) Return 𝑐𝑡 by combining the polynomial 𝑓𝑖 according to the form of 𝐹

𝑐𝑡 = 𝑓1 𝐺,𝑚1 ×𝑓2 𝐺2, 𝑚2 + 𝑓3(𝐺1 𝑚3) ×𝑓4(𝐺2, 𝑚4)

= 3 𝑥𝑣1 +𝑥𝑣2 +𝑥𝑣3 +𝑥𝑣7 4 𝑥𝑣9 +𝑥𝑣10 +𝑥𝑣17 +𝑥𝑣18 +7(𝑥𝑣3 +𝑥𝑣5 +𝑥𝑣7 +𝑥𝑣8)2(𝑥𝑣10 +𝑥𝑣11 +𝑥𝑣12 +𝑥𝑣19)

=𝑥𝑣1𝑥𝑣9+𝑥𝑣2𝑥𝑣9+𝑥𝑣3𝑥𝑣9+𝑥𝑣7𝑥𝑣9+𝑥𝑣1𝑥𝑣10+𝑥𝑣2𝑥𝑣10 +4𝑥𝑣3𝑥𝑣10 +4𝑥𝑣7𝑥𝑣10 +𝑥𝑣1𝑥𝑣17+𝑥𝑣2𝑥𝑣17+𝑥𝑣3𝑥𝑣17 +𝑥𝑣7𝑥𝑣17+𝑥𝑣1𝑥𝑣18+𝑥𝑣2𝑥𝑣18+𝑥𝑣3𝑥𝑣18+𝑥𝑣7𝑥𝑣18
+3𝑥𝑣5𝑥𝑣10+3𝑥𝑣8𝑥𝑣10+3𝑥𝑣3𝑥𝑣11+3𝑥𝑣5𝑥𝑣11+3𝑥𝑣7𝑥𝑣11+3𝑥𝑣8𝑥𝑣11+3𝑥𝑣3𝑥𝑣12+3𝑥𝑣5𝑥𝑣12+3𝑥𝑣7𝑥𝑣12+3𝑥𝑣8𝑥𝑣12+3𝑥𝑣3𝑥𝑣19+3𝑥𝑣5𝑥𝑣19+3𝑥𝑣7𝑥𝑣19+3𝑥𝑣8𝑥𝑣19

The process of generating a ciphertext 

by low-degree polynomials over small 

graphs consisted of few vertices

The randomly selected 𝐹 is not 

communicated by Alice to Bob.

(3) For each 𝑚𝑖 , generate a polynomial 𝑓𝑖 𝑚𝑖 on 𝐺𝑖 = 𝑋 or 𝑌 using the legacy algorithm
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Example of 1st round IPCC Algorithm
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𝑐𝑡 = 𝑥𝑣1𝑥𝑣9 +𝑥𝑣2𝑥𝑣9 +𝑥𝑣3𝑥𝑣9 +𝑥𝑣7𝑥𝑣9 +𝑥𝑣1𝑥𝑣10

+𝑥𝑣2𝑥𝑣10 +4𝑥𝑣3𝑥𝑣10 +4𝑥𝑣7𝑥𝑣10 +𝑥𝑣1𝑥𝑣17 +𝑥𝑣2𝑥𝑣17

+𝑥𝑣3𝑥𝑣17 +𝑥𝑣7𝑥𝑣17 +𝑥𝑣1𝑥𝑣18 +𝑥𝑣2𝑥𝑣18 +𝑥𝑣3𝑥𝑣18

+𝑥𝑣7𝑥𝑣18 +3𝑥𝑣5𝑥𝑣10 +3𝑥𝑣8𝑥𝑣10 +3𝑥𝑣3𝑥𝑣11 +3𝑥𝑣5𝑥𝑣11

+3𝑥𝑣7𝑥𝑣11 +3𝑥𝑣8𝑥𝑣11 +3𝑥𝑣3𝑥𝑣12 +3𝑥𝑣5𝑥𝑣12 +3𝑥𝑣7𝑥𝑣12
+3𝑥𝑣8𝑥𝑣12 +3𝑥𝑣3𝑥𝑣19 +3𝑥𝑣5𝑥𝑣19 +3𝑥𝑣7𝑥𝑣19 +3𝑥𝑣8𝑥𝑣19

3. Decryption (PDF substitution)

𝑠𝑘 = 𝑃𝐷𝐹 𝑣

= 𝑥𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ {𝑣1, 𝑣8, 𝑣18, 𝑣19, 𝑣20}
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑚 ← 𝑐𝑡(𝑃𝐷𝐹(𝑣1), 𝑃𝐷𝐹 𝑣2 , … )

𝑐𝑡(𝑃𝐷𝐹) = 0 + 0 + 0 + 0 + 0

+0+0+0+0+0
+0+0+1+0+0
+0+0+0+0+0
+0+0+0+0+3

= 4mod11

𝑐𝑡

public parameter

maximum degree of polynomial 𝑘=2, modulo 𝑝 = 11 Bob

An attacker cannot factor 𝑐𝑡 into a short polynomials that following the form 𝐹

▶ When applying the plaintext recovery attack, it cannot be perform for each 𝑓𝑖 ,

but it must be performed on a higher degree polynomial 𝐹
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The main improvement is the inclusion of a process for Alice to choose 𝐹,

and Bob does not need any information about this

because he just needs to substitute the PDF value for variables to get the original message

𝐹 is secret to everyone except Alice

This approach prevents attackers from using plaintext recovery attacks on each 𝑓𝑖

since they only have access to the ciphertext 𝑐𝑡

Even if the example can be factored and each polynomial can be attacked,

the real cryptosystem uses a ciphertext with many more vertices and high degree, amaking it more resistant to attacks

To solve 𝑐𝑡, an attacker would have to do a lot more computation than Bob

- attacker : solve 𝐹 (generate and check all possible terms)

- encryptor : generate each 𝑓𝑖 forming a ciphertext in the form of 𝐹

(amount of computation in the process of combining is negligible)

We expect that users encrypting messages will gain significant advantages

over attackers in terms of speed and memory

Improved Perfect Code Cryptosystem 30
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Improving performance of the implemented algorithms
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key size number of
terms

keygen
time

enc
time

dec
time

PDF cryptosystem
𝑝𝑘 4800 − byte

2.4 × 104 1ms 84,781ms 4ms
𝑠𝑘 400 − byte

IPCC (1 graph)
𝑝𝑘 2400 − byte

2.6 × 104 0.03ms 2.41ms 3.36ms
𝑠𝑘 200 − byte

IPCC (2 graphs)
𝑝𝑘 4800 − byte

2.3 × 104 1.06ms 0.35ms 0.33ms
𝑠𝑘 400 − byte

performance comparison (𝑛 = 200, 𝑘 = 4)
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New attack technique and problem analysis for 1st round IPCC

To increase the attack complexity, the degree 𝑘 must be large,

but the coefficients of high degree terms do not mix

Each coefficient generated in the encryption process is shared by 4𝑘 terms

These two reasons appear to be the root of the problem

The fundamental problem of the encryption process in the previous version

Improved Perfect Code Cryptosystem 32

As an example, consider the first example in the KAT for the case of f1. This is given a message m = 18790. The ciphertext
produced by the reference implementation contains the following list of coefficients (here stated without their multiplicities):
[35, 9087, 14460, 16002, 16620, 21637, 22560, 24760, 33530, 36038, 36868, 38564, 39587, 39792, 62376].
Summing these up gives us 411916 = 18790 mod 65521, which indeed is the plaintext. Note that the KAT file shows the hash of
the ciphertext, not the ciphertext itself. We ran this attack on ciphertexts produced by the KAT. There are some few cases (2 out
of 100 for f1, 0 out of 100 for f3, 8 out of 100 for f4) where this simple attack does not give the plaintext: in these cases, there
are more than 15 coefficients, because variables repeated leading to combinations. We are still working on tracing through
those to determine which of the coefficients we need to skip in summing up. We think that counting the frequency of
occurrence will give us information. But we wanted to announce our findings so far as a fast attack with a success probability of
more than 90% means that the system is typically broken.
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IPCC algorithm strengthening the encryption process
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𝑝𝑘

𝑐𝑡

3. Decryption

PDF substitution

(as same as the previous cryptosystem)

m ← 𝑐𝑡(𝑃𝐷𝐹(𝑣1), 𝑃𝐷𝐹 𝑣2 , … )

2. Encryption

(1) Select element 𝐹𝒢←
$
ℱ

(2) For 𝐹, distribute the message 𝑚

𝑚 = 𝐹(𝑚1,𝑚2, … )

(3) For each 𝑚𝑖 , generate a polynomial 𝑐𝑡𝑖 𝑚𝑖

with maximum degree 𝑘𝑖 on 𝐺𝑖 using the previous algorithm

(3-1) Distribute the 𝑚𝑖 to ෥𝑚1, ෥𝑚2, … to satisfy σ ෥𝑚𝑗 = 𝑚𝑖

(3-1-1) For ෥𝑚𝑗, choose a vertex 𝑢𝑗

(3-1-2) Select invariant polynomial ሚ𝑓𝑙 of degree≤𝑘𝑖−1

not including 𝑥𝑢𝑗 (0 ≤ 𝑙 ≤ 3)

(3-1-3) Calculate constant 𝑎𝑙 to satisfy ෥𝑚𝑗 = ሚ𝑓𝑙 − 𝑎𝑙

(3-1-4) Generate ෥𝑐𝑡𝑗 = σ ሚ𝑓𝑙 − 𝑎𝑙 𝑥𝑢𝑙 for ෥𝑚𝑗 (𝑢𝑙 ∈ 𝑁 𝑢𝑗 )

(3-2) For 𝑚𝑖 , pre-ciphertext is 𝑐𝑡𝑖 = σ ෥𝑐𝑡𝑗

(4) Combine the polynomials 𝑓𝑖 according to the form 𝐹

𝑐𝑡 ← 𝐹𝒢
𝑘 𝑥𝑣1 , 𝑥𝑣2 , … = 𝐹(𝑐𝑡1(𝑚1), 𝑐𝑡2(𝑚2),… )

(5) Genertate 𝑐𝑡 reduced by all graphs of 𝒢

1. Key gen

Public key : 2 or more small 

graphs that share a set of 

vertices and PDS

𝑝𝑘 ← 𝒢 = 𝐺1, 𝐺2, …

Secret key : PDF using PDS

𝑠𝑘 ← 𝑃𝐷𝐹 𝑣

= 𝑥𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ 𝑃𝐷𝑆
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

public parameter

maximum degree of polynomial 𝑘, modulo 𝑝 BobAlice
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Concepts of Invariant polynomial in the new algorithm

The invariant polynomial of degree 𝑘 is consisted according to

σ ሚ𝑓𝑙 − 𝑎𝑙 𝑥𝑢𝑙 for ෥𝑚𝑗 (𝑢𝑙 ∈ 𝑁 𝑢𝑗 )

Since 𝑙 = 0, 1, 2 or 3 on 3-regular graph,

invariant polynomial will look like as ሚ𝑓0 − 𝑎0 𝑥𝑢0 +
ሚ𝑓1 − 𝑎1 𝑥𝑢1 +

ሚ𝑓2 − 𝑎2 𝑥𝑢2 +
ሚ𝑓3 − 𝑎3 𝑥𝑢3

and ሚ𝑓𝑙 is invariant polynomial of degree ≤ 𝑘 − 1

Due to the property PDF, only the coefficient ሚ𝑓𝑋 − 𝑎𝑋 for 𝑥𝑢𝑋 s. t. 𝑥𝑢𝑋 = 1 where u𝑋 ∈ 𝑁 𝑢𝑗

is meaningful as a valid value

In the previous algorithm,

all ሚ𝑓𝑙 − 𝑎𝑙 were identical to the invariant polynomial for 𝑥𝑢𝑙

(ex. 𝑥𝑢0′ + 𝑥𝑢1′ + 𝑥𝑢2′ + 𝑥𝑢3′ 𝑥𝑢0 + 𝑥𝑢0′ + 𝑥𝑢1′ + 𝑥𝑢2′ + 𝑥𝑢3′ 𝑥𝑢1 + 𝑥𝑢0′ + 𝑥𝑢1′ + 𝑥𝑢2′ + 𝑥𝑢3′ 𝑥𝑢2 + 𝑥𝑢0′ + 𝑥𝑢1′ + 𝑥𝑢2′ + 𝑥𝑢3′ 𝑥𝑢3

= 𝑥𝑢0′ + 𝑥𝑢1′ + 𝑥𝑢2′ + 𝑥𝑢3′ 𝑥𝑢0 + 𝑥𝑢1 + 𝑥𝑢2 + 𝑥𝑢3 )

Improved Perfect Code Cryptosystem 34
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𝑣1

𝑣2 𝑣3

𝑣5
𝑣8

𝑣6
𝑣7

𝑣4

Graph 𝐺1

𝑣2

𝑣8 𝑣7

𝑣1
𝑣5

𝑣3
𝑣4

𝑣6

Graph 𝐺2

1. Key gen

Public key : 2 graphs that share a set of vertices and PDS

𝑝𝑘 ← 𝒢 = 𝐺1, 𝐺2

Secret key : PDF using PDS

𝑠𝑘 ← 𝑃𝐷𝐹 𝑣 = 𝑥𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ 𝑃𝐷𝑆
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑠𝑘 ← 𝑃𝐷𝐹 𝑣 = ቊ

1, 𝑖𝑓 𝑣 ∈ 𝑣1, 𝑣8
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑉
D1

D2

D3

D4

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5 𝑣6

𝑣7

𝑣8

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣1
𝑣8

𝑉
D1

D2

D3

D4

𝑣2 𝑣3

𝑣4

𝑣5 𝑣6

𝑣7

Graph 𝑮𝟏

𝑉

D2

D3

D4

𝑣2 𝑣3

𝑣4

𝑣5 𝑣7

𝑣6

𝑣2 𝑣6

𝑣8 𝑣7

𝑣1𝑣3
𝑣5𝑣4

𝑣1
𝑣8

D1

Graph 𝑮𝟐

𝑉
𝑣2 𝑣3

𝑣4

𝑣5 𝑣6

𝑣7

𝑣1
𝑣8

D1

vertex shuffling

1

0

𝑣1
𝑉

𝑣2
𝑣3
𝑣4
𝑣5
𝑣6
𝑣7
𝑣8

→
𝑓 𝑉

1

0

𝑣1
𝑣2
𝑣3
𝑣4
𝑣5
𝑣6
𝑣7
𝑣8

→
𝑓

Bob
public parameter

maximum degree of polynomial 𝑘 = 2, modulo 𝑝 = 13
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Public key graph set 𝓖

Graph 𝑮𝟏 Graph 𝑮𝟐

𝑁 𝑣1 = 𝑣1, 𝑣2, 𝑣4, 𝑣6

𝑁 𝑣2 = 𝑣1, 𝑣2, 𝑣3, 𝑣7

𝑁 𝑣3 = 𝑣2, 𝑣3, 𝑣4, 𝑣8

𝑁 𝑣4 = 𝑣1, 𝑣3, 𝑣4, 𝑣5

𝑁 𝑣5 = 𝑣4, 𝑣5, 𝑣6, 𝑣8

𝑁 𝑣6 = 𝑣1, 𝑣5, 𝑣6, 𝑣7

𝑁 𝑣7 = 𝑣2, 𝑣6, 𝑣7, 𝑣8

𝑁 𝑣8 = 𝑣3, 𝑣5, 𝑣7, 𝑣8

𝑁 𝑣1 = 𝑣1, 𝑣3, 𝑣5, 𝑣6

𝑁 𝑣2 = 𝑣2, 𝑣3, 𝑣6, 𝑣8

𝑁 𝑣3 = 𝑣1, 𝑣2, 𝑣3, 𝑣4

𝑁 𝑣4 = 𝑣3, 𝑣4, 𝑣5, 𝑣8

𝑁 𝑣5 = 𝑣1, 𝑣4, 𝑣5, 𝑣7

𝑁 𝑣6 = 𝑣1, 𝑣2, 𝑣6, 𝑣7

𝑁 𝑣7 = 𝑣5, 𝑣6, 𝑣7, 𝑣8

𝑁 𝑣8 = 𝑣2, 𝑣4, 𝑣7, 𝑣8

𝑣1

𝑣2 𝑣3

𝑣5
𝑣8

𝑣6
𝑣7

𝑣4

Graph 𝐺1

𝑣2

𝑣8 𝑣7

𝑣1
𝑣5

𝑣3
𝑣4

𝑣6

Graph 𝐺2

1. Key gen

Public key : 2 graphs that share a set of vertices and PDS

𝑝𝑘 ← 𝒢 = 𝐺1, 𝐺2

Secret key : PDF using PDS

𝑠𝑘 ← 𝑃𝐷𝐹 𝑣 = 𝑥𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ 𝑃𝐷𝑆
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑠𝑘 ← 𝑃𝐷𝐹 𝑣 = ቊ

1, 𝑖𝑓 𝑣 ∈ 𝑣1, 𝑣8
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Bob
public parameter

maximum degree of polynomial 𝑘 = 2, modulo 𝑝 = 13
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2. Encryption

(1) Select element 𝐹𝒢←
$
ℱ

(2) For 𝐹, distribute the message 𝑚

𝑚 = 𝐹(𝑚1, 𝑚2, … )

(3) For each 𝑚𝑖, generate a polynomial 𝑐𝑡𝑖 𝑚𝑖

with maximum degree 𝑘𝑖 on 𝐺𝑖 using legacy algorithm

(3-1) Distribute the 𝑚𝑖 to ෥𝑚1, ෥𝑚2, … to satisfy σ ෥𝑚𝑗 = 𝑚𝑖

(3-1-1) For ෥𝑚𝑗, choose a vertex 𝑢𝑗

(3-1-4) Generate ෥𝑐𝑡𝑗 = σ ሚ𝑓𝑙 − 𝑎𝑙 𝑥𝑢𝑙 for ෥𝑚𝑗 (𝑢𝑙 ∈ 𝑁 𝑢𝑗 )

(3-2) For 𝑚𝑖, pre-ciphertext is 𝑐𝑡𝑖 = σ ෥𝑐𝑡𝑗

Public key graph set 𝓖

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣2 𝑣6

𝑣8 𝑣7

𝑣1𝑣3
𝑣5𝑣4

Graph 𝐺1 Graph 𝐺2

(1) 𝐹 = 𝑓1 × 𝑓2

(2) 𝑚 = 12 = 3 × 4 = 𝑚1 ×𝑚2 = 𝐹 𝑚1, 𝑚2

(3) Encrypt 𝑚1 to polynomial 𝑐𝑡1 of degree 1 on 𝐺1, 𝑚2 to polynomial 𝑐𝑡2 of degree 2 on 𝐺2

(3-1) For 𝑚1 = 3, let ෥𝑚1 = 1, ෥𝑚2 = 2 ( ෥𝑚1 + ෥𝑚2 = 𝑚1)

(3-1-1) Select vertex 𝑣2 for ෥𝑚1, vertex 𝑣3 for ෥𝑚2

(3-1-4) ෥𝑐𝑡1 = 𝑥𝑣1 + 𝑥𝑣2 + 𝑥𝑣3 + 𝑥𝑣7 , ෥𝑐𝑡2 = 2 𝑥𝑣2 + 𝑥𝑣3 + 𝑥𝑣4 + 𝑥𝑣8

(3-2) 𝑐𝑡1 = 𝑥𝑣1 + 3𝑥𝑣2 + 3𝑥𝑣3 + 2𝑥𝑣4 + 𝑥𝑣7 + 2𝑥𝑣8

Alice
public parameter

maximum degree of polynomial 𝑘 = 2, modulo 𝑝 = 13
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2. Encryption

(3) For each 𝑚𝑖, generate a polynomial 𝑐𝑡𝑖 𝑚𝑖

with maximum degree 𝑘𝑖 on 𝐺𝑖 using legacy algorithm

(3-1) Distribute the 𝑚𝑖 to ෥𝑚1, ෥𝑚2, … to satisfy σ ෥𝑚𝑗 = 𝑚𝑖

(3-1-1) For ෥𝑚𝑗, choose a vertex 𝑢𝑗

(3-1-2) Select invariant polynomial ሚ𝑓𝑙 of degree≤𝑘𝑖−1

not consisted by 𝑥𝑢𝑗 (0 ≤ 𝑙 ≤ 3)

(3-1-3) Calculate constant ෤𝑎𝑙 to satisfy ෥𝑚𝑗 = ሚ𝑓𝑙 − 𝑎𝑙

Public key graph set 𝓖

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣2 𝑣6

𝑣8 𝑣7

𝑣1𝑣3
𝑣5𝑣4

Graph 𝐺1 Graph 𝐺2

(3) 𝑚2 to polynomial 𝑐𝑡2 of degree 2(= 𝑘) on 𝐺2

(3-1) For 𝑚2 = 4, ෥𝑚 = 4 ( ෥𝑚 = 𝑚1)

(3-1-1) Select vertex 𝑣6 for ෥𝑚

(3-1-2) Select invariant polynomials ሚ𝑓𝑙 of degree≤𝑘−1=1 not including 𝑥𝑣6
ሚ𝑓0 = 3 𝑥𝑣1 + 𝑥𝑣2 + 𝑥𝑣3 + 𝑥𝑣4 , ሚ𝑓1 = 𝑥𝑣3 + 𝑥𝑣4 + 𝑥𝑣5 + 𝑥𝑣8 ,

ሚ𝑓2 = 5 𝑥𝑣1 + 𝑥𝑣4 + 𝑥𝑣5 + 𝑥𝑣7 , ሚ𝑓3 = 4 𝑥𝑣2 + 𝑥𝑣4 + 𝑥𝑣7 + 𝑥𝑣8

(3-1-3) Calculate constant 𝑎𝑙 to satisfy ෥𝑚 = 4 = ሚ𝑓𝑙 − 𝑎𝑙

𝑎0 = −1, 𝑎1 = −3, 𝑎2 = 1, 𝑎3 = 0

Alice
public parameter

maximum degree of polynomial 𝑘 = 2, modulo 𝑝 = 13

෥𝑐𝑡𝑗 = σ ሚ𝑓𝑙 − 𝑎𝑙 𝑥𝑢𝑙 for ෥𝑚𝑗 (𝑢𝑙 ∈ 𝑁 𝑢𝑗 )
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2. Encryption

(3-1-4) Generate ෥𝑐𝑡𝑗 = σ ሚ𝑓𝑙 − 𝑎𝑙 𝑥𝑢𝑙 for ෥𝑚𝑗 (𝑢𝑙 ∈ 𝑁 𝑢𝑗 )

(3-1-5) Reduce the polynomial by neighbor relation of 𝐺𝑖

(3-2) For 𝑚𝑖, pre-ciphertext is 𝑐𝑡𝑖 = σ ෥𝑐𝑡𝑗

(4) Combine the polynomials 𝑓𝑖 according to the form 𝐹

𝑐𝑡 ← 𝐹𝒢
𝑘 𝑥𝑣1 , 𝑥𝑣2 , … = 𝐹(𝑐𝑡1(𝑚1), 𝑐𝑡2(𝑚2), … )

(3-1-4) ෥𝑐𝑡 = ሚ𝑓0 − 𝑎0 𝑥𝑢0 +
ሚ𝑓1 − 𝑎1 𝑥𝑢1 +

ሚ𝑓2 − 𝑎2 𝑥𝑢2 +
ሚ𝑓3 − 𝑎3 𝑥𝑢3 (u𝑙 ∈ 𝑣1, 𝑣2, 𝑣6, 𝑣7 )

= 3 𝑥𝑣1 +𝑥𝑣2 +𝑥𝑣3 +𝑥𝑣4 + 1 𝑥𝑣1 + 𝑥𝑣3 +𝑥𝑣4 +𝑥𝑣5 +𝑥𝑣8 + 3 𝑥𝑣2

+ 5 𝑥𝑣1 +𝑥𝑣4 +𝑥𝑣5 +𝑥𝑣7 − 1 𝑥𝑣6 + 4 𝑥𝑣2 +𝑥𝑣4 +𝑥𝑣7 +𝑥𝑣8 𝑥𝑣7

(3-1-5) ෥𝑐𝑡 = 3𝑥𝑣1 + 1 𝑥𝑣1 + 𝑥𝑣5 + 3 𝑥𝑣2 + 5𝑥𝑣4 + 1 𝑥𝑣6 + 4𝑥𝑣7 𝑥𝑣7

=3𝑥𝑣1 + 𝑥𝑣1 + 𝑥𝑣2𝑥𝑣5 + 3𝑥𝑣2 + 5𝑥𝑣4𝑥𝑣6 + 𝑥𝑣6 + 4𝑥𝑣7

=4𝑥𝑣1 + 𝑥𝑣2𝑥𝑣5 + 3𝑥𝑣2 + 5𝑥𝑣4𝑥𝑣6 + 𝑥𝑣6 + 4𝑥𝑣7 = 𝑐𝑡2

(4) 𝑐𝑡 = 𝑐𝑡1 × 𝑐𝑡2 = 𝑥𝑣1 +3𝑥𝑣2 +3𝑥𝑣3 + 2𝑥𝑣4 +𝑥𝑣7 +2𝑥𝑣8 4𝑥𝑣1 +𝑥𝑣2𝑥𝑣5 +3𝑥𝑣2 + 5𝑥𝑣4𝑥𝑣6 +𝑥𝑣6 + 4𝑥𝑣7

Due to the property PDF,

only the coefficient ሚ𝑓1 − 𝑎1 for 𝑥𝑢1

is meaningful as a valid value

Alice
public parameter

maximum degree of polynomial 𝑘 = 2, modulo 𝑝 = 13

Public key graph set 𝓖

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣2 𝑣6

𝑣8 𝑣7

𝑣1𝑣3
𝑣5𝑣4

Graph 𝐺1 Graph 𝐺2



RASE
4. New encryption algorithm

Example

Improved Perfect Code Cryptosystem 40

2. Encryption

(5) Generate 𝑐𝑡 reducted by all graphs of 𝒢

Alice
public parameter

maximum degree of polynomial 𝑘 = 2, modulo 𝑝 = 13

Public key graph set 𝓖

𝑣1 𝑣4

𝑣2 𝑣3

𝑣5𝑣6
𝑣8𝑣7

𝑣2 𝑣6

𝑣8 𝑣7

𝑣1𝑣3
𝑣5𝑣4

Graph 𝐺1 Graph 𝐺2

(5) 𝑐𝑡 = 𝑥𝑣1 + 3𝑥𝑣2 +3𝑥𝑣3 + 2𝑥𝑣4 +𝑥𝑣7 +2𝑥𝑣8 4𝑥𝑣1 + 𝑥𝑣1 +3𝑥𝑣2 +3𝑥𝑣3 + 2𝑥𝑣4 +𝑥𝑣7 +2𝑥𝑣8 𝑥𝑣2𝑥𝑣5

+ 𝑥𝑣1 +3𝑥𝑣2 +3𝑥𝑣3 + 2𝑥𝑣4 +𝑥𝑣7 +2𝑥𝑣8 3𝑥𝑣2 + 𝑥𝑣1 +3𝑥𝑣2 + 3𝑥𝑣3 +2𝑥𝑣4 +𝑥𝑣7 + 2𝑥𝑣8 5𝑥𝑣4𝑥𝑣6

+ 𝑥𝑣1 +3𝑥𝑣2 +3𝑥𝑣3 + 2𝑥𝑣4 +𝑥𝑣7 +2𝑥𝑣8 𝑥𝑣6 + 𝑥𝑣1 + 3𝑥𝑣2 +3𝑥𝑣3 + 2𝑥𝑣4 +𝑥𝑣7 +2𝑥𝑣8 4𝑥𝑣7

= 𝑥𝑣1 +2𝑥𝑣8 4𝑥𝑣1 + 3𝑥𝑣2 𝑥𝑣2𝑥𝑣5 + 3𝑥𝑣2 3𝑥𝑣2 + 𝑥𝑣7 4𝑥𝑣7

= 4𝑥𝑣1 + 8𝑥𝑣1𝑥𝑣8 +3𝑥𝑣2𝑥𝑣5 + 9𝑥𝑣2 +4𝑥𝑣7

As the size of graph increases, the number 

of unreduced terms is expected to increase

Although generated by multiplying polynomial of degree 2, 

the maximum degree of ciphertext is 2

▶ Need to study how to ensure maximum order of ciphertext

generated by multiplying low-degree polynomials
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𝑐𝑡 = 4𝑥𝑣1 + 8𝑥𝑣1𝑥𝑣8 + 3𝑥𝑣2𝑥𝑣5 +9𝑥𝑣2 + 4𝑥𝑣7

𝑐𝑡 𝑃𝐷𝐹 𝑣1 , 𝑃𝐷𝐹 𝑣2 , … = 4 + 8 = 12 = 𝑚𝑒𝑠𝑠𝑎𝑔𝑒
Message cannot be obtained

only by the sum of the coefficients

(addressing vulnerability revealed by the feedback  

by generating meaningless coefficients)

3. Decryption

Secret key : PDF using PDS

𝑠𝑘 ← 𝑃𝐷𝐹 𝑣 = 𝑥𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ 𝑃𝐷𝑆
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠𝑘 ← 𝑃𝐷𝐹 𝑣 = ቊ
1, 𝑖𝑓 𝑣 ∈ 𝑣1, 𝑣8
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Bob
public parameter

maximum degree of polynomial 𝑘 = 2, modulo 𝑝 = 13
𝑣1

𝑣2 𝑣3

𝑣5
𝑣8

𝑣6
𝑣7

𝑣4

Graph 𝐺1

𝑣2

𝑣8 𝑣7

𝑣1
𝑣5

𝑣3
𝑣4

𝑣6

Graph 𝐺2
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Future work

- Meaning of the method using multi-graph

To an attacker, it do not seem like to make much of difference from using just one graph

- Security analysis to known attacks

- Generation of an algorithm for randomly selected 𝐹

- Optimize memory usage

- Ciphertext packing method

Improved Perfect Code Cryptosystem 42
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